
TUVF: LEARNING GENERALIZABLE
TEXTURE UV RADIANCE FIELDS

An-Chieh Cheng1 Xueting Li2 Sifei Liu2† Xiaolong Wang1†
1UC San Diego 2NVIDIA

Figure 1: We propose Texture UV Radiance Fields (TUVF) to render a 3D consistent texture given
a 3D object shape input. TUVF provides a category-level texture representation disentangled from
3D shapes. Top three rows: TUVF can synthesize realistic textures by training from a collection of
single-view images; Fourth row: Given a 3D shape input, we can render different textures on top by
using different texture codes; Bottom row: We can perform editing on a given texture (adding a flag
of France) and directly apply the same texture on different 3D shapes without further fine-tuning.
Note that all samples are rendered under 1024×1024 resolution; zoom-in is recommended.

ABSTRACT

Textures are a vital aspect of creating visually appealing and realistic 3D models. In
this paper, we study the problem of generating high-fidelity texture given shapes of
3D assets, which has been relatively less explored compared with generic 3D shape
modeling. Our goal is to facilitate a controllable texture generation process, such
that one texture code can correspond to a particular appearance style independent
of any input shapes from a category. We introduce Texture UV Radiance Fields
(TUVF) that generate textures in a learnable UV sphere space rather than directly on
the 3D shape. This allows the texture to be disentangled from the underlying shape
and transferable to other shapes that share the same UV space, i.e., from the same
category. We integrate the UV sphere space with the radiance field, which provides
a more efficient and accurate representation of textures than traditional texture
maps. We perform our experiments on synthetic and real-world object datasets
where we achieve not only realistic synthesis but also substantial improvements
over state-of-the-arts on texture controlling and editing.

† Equal advising.
Codes, datasets, and trained models will be made publicly available. Interactive visualizations are provided at
https://www.anjiecheng.me/TUVF/.

1

https://www.anjiecheng.me/TUVF/

1 INTRODUCTION

3D content creation has attracted much attention given its wide applications in mixed reality, digital
twins, filming, and robotics. However, while most efforts in computer vision and graphics focus on
3D shape modeling (Chabra et al., 2020; Zeng et al., 2022; Cheng et al., 2023), there is less emphasis
on generating realistic textures (Siddiqui et al., 2022). Textures play a crucial role in enhancing the
immersive experiences in virtual and augmented reality. While 3D shape models are abundant in
simulators, animations, video games, industry manufacturing, synthetic architectures, etc., rendering
realistic and 3D consistent texture on these shape models without human efforts (Figure 1 first three
rows) will fundamentally advance the visual quality, functionalities, and experiences.

Given instances of one category, ideally, their textures should be disentangled from their shapes. This
can be particularly useful in scenarios where the appearance of an object needs to be altered frequently,
but the shape remains the same. For example, it is common in video games to have multiple variations
of the same object with different textures to provide visual variety without creating entirely new 3D
models. Thus, the synthesis process should also be controllable, i.e., we can apply different textures
to the exact shape (Figure 1 fourth row) or use the same texture code for different shapes and even edit
part of the texture (Figure 1 bottom row). Recently, the wide utilization of GANs (Goodfellow et al.,
2014) allows training on 3D content creation with only 2D supervision (Nguyen-Phuoc et al., 2019;
Siddiqui et al., 2022; Skorokhodov et al., 2022; Chan et al., 2022). While this alleviates the data and
supervision problem, the learned texture representation often highly depends on the input geometry,
making the synthesis process less controllable: With the same texture code or specifications, the
appearance style of the generated contents changes based on the geometric inputs.

We propose a novel texture representation, Texture UV Radiance Fields (TUVF), for high-quality
and disentangled texture generation on a given 3D shape, i.e., a sampled texture code represents
a particular appearance style adaptable to different shapes. The key to disentangling the texture
from geometry is to generate the texture in a canonical UV sphere space instead of directly on the
shape. We train the canonical UV space for each category via a Canonical Surface Auto-encoder
in a self-supervised manner so that the correspondence between the UV space and the 3D shape is
automatically established during training. Unlike traditional UV mesh representation, TUVF does
not suffer from topology constraints and can easily adapt to a continuous radiance field.

Given a texture code, we first encode it with a texture mapping network to a style embedding, which
is then projected onto the canonical UV sphere as a textured UV sphere. Using correspondence, we
can assign textures to arbitrary 3D shapes and construct a point-based radiance field. Consequently,
we sample the points along the ray and around the object shape surface and render the RGB image.
In contrast to volumetric rendering (Drebin et al., 1988; Mildenhall et al., 2020), our Texture UV
Radiance Field allows efficient rendering and disentangles the texture from the 3D surface. Finally,
we apply an adversarial loss using high-quality images from the same category.

We train our model on two real-world datasets (Yang et al., 2015; Park et al., 2018a), along with a
synthetic dataset generated by our dataset pipeline. Figure 1 visualizes the results of synthesizing 3D
consistent texture given a 3D shape. Our method can provide realistic texture synthesis. More impor-
tantly, our method allows complete texture disentanglement from geometry, enabling controllable
synthesis and editing (Figure 1 bottom two rows). With the same shape, we evaluate how diverse the
textures can be synthesized. With the same texture, we evaluate how consistently it can be applied
across shapes. Our method outperforms previous state-of-the-arts significantly on both metrics.

2 RELATED WORK
Neural Radiance Fields. Neural Radiance Fields (NeRFs) have been widely studied on broad
applications such as high fidelity novel view synthesis (Mildenhall et al., 2020; Barron et al., 2021;
2023) and 3D reconstruction (Wang et al., 2021; Yariv et al., 2021; Zhang et al., 2021). Following
this line of research, the generalizable versions of NeRF are proposed for faster optimization and
few-view synthesis (Schwarz et al., 2020; Trevithick & Yang, 2021; Li et al., 2021a; Chen et al.,
2021; Wang et al., 2022; Venkat et al., 2023). Similarly, TUVF is trained in category-level and learn
across instances. However, instead of learning from reconstruction with multi-view datasets (Yu
et al., 2021a; Chen et al., 2021), our method leverages GANs for learning from 2D single-view image
collections. From the rendering perspective, instead of performing volumetric rendering (Drebin
et al., 1988), more efficient rendering techniques have been applied recently, including surface
rendering (Niemeyer et al., 2020; Yariv et al., 2020) and rendering with point clouds (Xu et al., 2022;

2

Yang et al., 2022; Zhang et al., 2023b). Our work relates to the point-based paradigm: Point-Nerf (Xu
et al., 2022) models a volumetric radiance field using a neural point cloud; Neu-Mesh (Yang et al.,
2022) proposes a point-based radiance field using mesh vertices. However, these approaches typically
require densely sampled points and are optimized for each scene. In contrast, TUVF only requires
sparse points for rendering and is generalizable across scenes.

Texture Synthesis on 3D Shapes. Texture synthesis has been an active research area in computer
vision and graphics for a long time, with early works focusing on 2D image textures (Cross & Jain,
1983; Taubin, 1995; Efros & Leung, 1999) and subsequently expanding to 3D texture synthesis (Turk,
2001; Bhat et al., 2004; Kopf et al., 2007). Recently, learning-based methods (Raj et al., 2019;
Siddiqui et al., 2022; Foti et al., 2022) combined with differentiable rendering techniques (Liu et al.,
2019; Mildenhall et al., 2020) have shown promising results in texture synthesis on 3D shapes
by leveraging generative adversarial networks (GANs) (Goodfellow et al., 2014) and variational
autoencoders (VAEs) (Kingma & Welling, 2013). These paradigms have been applied to textured
shape synthesis (Pavllo et al., 2020; Gao et al., 2022; Chan et al., 2022) and scene completion (Dai
et al., 2021; Azinović et al., 2022). Motivated by these works, we also adopt GANs to supervise a
novel representation for 3D texture synthesis. This allows our model to train from a collection of
single-view images instead of using multi-view images for training.

Texture Representations. Several mesh-based methods (Oechsle et al., 2019; Dai et al., 2021; Yu
et al., 2021b; Chen et al., 2022; Siddiqui et al., 2022; Chen et al., 2023; Yu et al., 2023) have been pro-
posed. AUV-Net (Chen et al., 2022) embed 3D surfaces into a 2D aligned UV space using traditional
UV mesh; however, they requires shape-image pairs as supervision. Texturify (Siddiqui et al., 2022)
use 4-RoSy fields (Palacios & Zhang, 2007) to generate textures on a given mesh. However, the
texture representation is entangled with the input shape, and the style can change when given different
shape inputs. Our approach falls into the NeRF-based methods (Chan et al., 2022; Skorokhodov
et al., 2022). The tri-plane representation has been widely used in these methods. However, these
methods often face a similar problem in structure and style entanglement. NeuTex (Xiang et al.,
2021) provides an explicit disentangled representation. However, the representation is designed for
a single scene. Our TUVF representation disentangles texture from geometry and is generalizable
across instances, which allows transferring the same texture from one shape to another.

Disentanglement of Structure and Style. The disentanglement of structure and style in generative
models allows better control and manipulation in the synthesis process. Common approaches to
achieve disentanglement include using Autoencoders (Kingma & Welling, 2013; Kulkarni et al., 2015;
Jha et al., 2018; Mathieu et al., 2019; Liu et al., 2020; Park et al., 2020; Pidhorskyi et al., 2020) and
GANs (Chen et al., 2016; Huang et al., 2018; Karras et al., 2019; Singh et al., 2019; Nguyen-Phuoc
et al., 2019; Chan et al., 2021). For example, the Swapping Autoencoder (Park et al., 2020) learns
disentanglement by leveraging network architecture bias and enforcing the texture branch of the
network to encode co-occurrent patch statistics across different parts of the image. However, these
inductive biases do not ensure full disentanglement, and the definition of disentanglement itself
is not clearly defined. In the second paradigm with adversarial learning, StyleGAN (Karras et al.,
2019) learns separate mappings for the structure and style of images, allowing for high-quality image
synthesis with fine-grained control over image attributes. Recently, CoordGAN (Mu et al., 2022)
shows that it is possible to train GANs and pixel-wise dense correspondence can automatically
emerge. Our work leverages GANs to provide supervision in training, but instead of disentangling
texture from 2D structures, we are learning the texture for 3D object shapes.

3 TEXTURE UV RADIANCE FIELDS

We introduce Texture UV Radiance Fields (TUVF) that generate a plausible texture UV representa-
tion conditioned on the shape of a given 3D object. Semantically corresponding points on different
instances across the category are mapped to the same locations on the texture UV, which inherently
enables applications such as texture transfer during inference. As shown in Figure 2, our texture
synthesis pipeline begins with a canonical surface auto-encoder (Section 3.1) that builds dense corre-
spondence between a canonical UV sphere and all instances in a category. Such dense correspondence
allows us to synthesize textures on a shared canonical UV space using a coordinate-based generator
(Section 3.2). Finally, since we do not assume known object poses for each instance, we render the
generated radiance field (Section 3.3) and train the framework with adversarial learning (Section 3.4).

3

Canonical Surface Auto-encoder Texture UV Radiance Fields Rendering

fθ

gθ

Texture Feature Generator

Vo
lu

me
 R

en
de

rin
g

D
hθ

(Section 3.1)

(Section 3.2)

(Section 3.3)

(Section 3.4)

Patch-based
Adversarial
Learning

Figure 2: Method overview. We perform two-stage training: (i) We first train the Canonical Surface
Auto-encoder (Equation 6), which learns decoders fθ () and gθ () predicting the coordinates and
normals for each point on the UV sphere, given an encoded shape. (ii) We then train the Texture
Feature Generator hθ () which outputs a textured UV sphere. We can construct a Texture UV
Radiance Field with the outputs from fθ, gθ, and hθ, and render an RGB image as the output. We
perform patch-based generative adversarial learning (Equation 7) to supervise hθ.

3.1 CANONICAL SURFACE AUTO-ENCODER

The key intuition of this work is to generate texture on a shape-independent space, where we resort to
a learnable UV space containing dense correspondences across different instances in a category. To
this end, we learn a canonical surface auto-encoder that maps any point on a canonical UV sphere to
a point on an object’s surface (Cheng et al., 2021; 2022). Specifically, given a 3D object with point
O, we first encode its shape into a geometry code zgeo ∈ Rd by an encoder E (Cheng et al., 2021).
For a point p on the canonical UV sphere, we feed the concatenation of its coordinates Xp and the
geometry code into an implicit function fθ (Figure 2) to predict the coordinates of the mapped
point p′, denoted as Xp′ , on the given object’s surface. We further predict the normal Np′ at p′ with a
separate implicit function gθ (Figure 2). The overall process can be denoted as follows:

zgeo = E(O) (1)
Xp′ = fθ(Xp; zgeo), Np′ = gθ(Xp′ ; zgeo) (2)

The coordinates and normal of p′ are then used for the rendering process discussed in Section 3.3.

We use a graph-based point encoder following DGCNN (Wang et al., 2019) and decoder architecture
following (Cheng et al., 2022) for fθ and gθ. As proved by (Cheng et al., 2021), correspondences
emerge naturally during training, and fθ and gθ are trained end-to-end using Chamfer Distance (Borge-
fors, 1988) on the surface points and the L2 losses on the indicator grid discussed in Section 3.4.

3.2 TEXTURE FEATURE GENERATOR

The canonical UV sphere defines dense correspondences associated with all instances in a category.
Thus, shape-independent textures can be formulated as generating texture features on top of this
sphere space. To this end, we introduce CIPS-UV, an implicit architecture for texture mapping
function hθ (Figure 2). Specifically, CIPS-UV takes a 3D point p on the canonical sphere Xp, and
a randomly sampled texture style vector ztex ∼ N (0, 1) as inputs and generates the texture feature
vector cj ∈ Rd at point p, which are further used for rendering as discussed in Section 3.3. The
style latent is injected via weight modulation, similar to StyleGAN (Karras et al., 2019). We design
our hθ based on the CIPS generator (Anokhin et al., 2021), where the style vector ztex is used to
modulate features at each layer. This design brings two desired properties. First, combined with the
canonical UV sphere, we do not require explicit parameterization, such as unwrapping to 2D. Second,
it does not include operators (e.g., spatial convolutions (Schmidhuber, 2015), up/downsampling, or
self-attentions (Zhang et al., 2019)) that bring interactions between pixels. This is important because
nearby UV coordinates may not correspond to exact neighboring surface points in the 3D space. As
a result, our generator can better preserve the 3D semantic information and produce realistic and
diverse textures on the UV sphere. Please refer to Appendix L for implementation details.

4

3.3 RENDERING FROM UV SPHERE

Efficient Ray Sampling. Surface rendering is known for its speed, while volume rendering is
known for its better visual quality (Oechsle et al., 2021). Similar to (Oechsle et al., 2021; Yariv et al.,
2021; Wang et al., 2021), we take advantage of both to speed up rendering while preserving the visual
quality, i.e., we only render the color of a ray on points near the object’s surface. To identify valid
points near the object’s surface, we start by uniformly sampling 256 points along a ray between the
near and far planes and computing the density value σi (discussed below) for each position xi. We
then compute the contribution (denoted as wi) of xi to the ray radiance as

wi = αi · Ti, αi = 1− exp(−σiδ), Ti = exp(−
i−1∑
j=1

αjδj) (3)

where δ is the distance between adjacent samples. If wi = 0, then xi is an invalid sample (Hu et al.,
2022) and will not contribute to the final ray radiance computation. Empirically, we found that
sampling only three points for volume rendering is sufficient. It is worth noting that sampling σi

alone is also fast since the geometry is known in our setting.
Volume Density from Point Clouds. We discuss how to derive a continuous volume density from
the Canonical Surface Auto-encoder (Section 3.1), which was designed to manipulate discrete points.
Given a set of spatial coordinates and their corresponding normal derived from fθ and gθ, we use
the Poisson Surface Reconstruction algorithm (Peng et al., 2021) to obtain indicator function values
over the 3D grid. We then retrieve the corresponding indicator value dpsr(xi) for each location xi

via trilinear interpolation. dpsr(xi) is numerically similar to the signed distance to the surface and
can serve as a proxy for density in volume rendering. We adopt the formulation from VolSDF (Yariv
et al., 2021) to transform the indicator value into density fields σ by:

σ(xi) =
1

γ
· Sigmoid(

−dpsr(xi)

γ
) (4)

Note that the parameter γ controls the tightness of the density around the surface boundary and is a
learnable parameter in VolSDF. However, since our geometry remains fixed during training, we used
a fixed value of γ = 5e−4.
Point-based Radiance Field. To compute the radiance for a shading point xi, we query the K
nearest surface points p′j∈NK

in the output space of the Canonical Surface Auto-encoder and obtain
their corresponding feature vector cj∈NK

by hθ. We then use an MLPF , following (Xu et al., 2022),
to process a pair-wise feature between the shading point xi and each nearby neighboring point,
expressed as cj,xi

= MLPF (cj , p
′
j − xi). Next, we apply inverse distance weighting to normalize

and fuse these K features into one feature vector cxi
for shading point xi:

cxi
=

∑
j∈NK

ρj∑
ρj

cj,xi
, where ρj =

1∥∥p′j − xi

∥∥ (5)

Finally, we use another MLPC to output a final color value for point xi based on cj,xi and an optional
viewing direction d, denoted C(xi) = MLPC(cj,xi

⊕
d). We design MLPF and MLPC to be shared

across all points, i.e., as implicit functions, so that they do not encode local geometry information.

3.4 GENERATIVE ADVERSARIAL LEARNING

Patch-based Discriminator. NeRF rendering is expressive but can be computationally expensive
when synthesizing high-resolution images. For GAN-based generative NeRFs, using 2D convolutional
discriminators that require entire images as inputs further exacerbates this challenge. Thus, in our
work, we adopt the efficient and stable patch-discriminator proposed in EpiGRAF (Skorokhodov
et al., 2022). During training, we sample patches starting from a minimal scale, covering the entire
image in low resolution. As the scale gradually grows, the patch becomes high-resolution image
crops. As our rendering process is relatively lightweight (see Section 3.3), we use larger patches
(128×128) than those used in EpiGRAF (64×64), which brings better quality.
Training Objectives. We train the Canonical Surface Auto-encoder (Section 3.1) and the Texture
Generator (Section 3.2) in separate stages. In stage-1, we adopt a Chamfer Distance between the
output and input point sets, and a L2 loss to learn the mapping dpsr(.) between points and volume
density, as aforementioned:

LCSAE = LCD(p, p′i) + LDPSR ∥ χ′ − χ ∥ (6)

5

Figure 3: Qualitative comparison. TUVF achieves much more realistic, high-fidelity, and diverse
3D consistent textures compared to previous approaches. Each column also presents results generated
using the same texture code. Texturify and EpiGRAF both have entangled texture and geometry
representations, which occasionally result in identical global colors or similar local details despite
having different texture codes. Visualized under 1024×1024 resolution; zoom-in is recommended.

where (χ′, χ) denotes the predicted and ground truth indicator function (see details in (Peng et al.,
2021)). In stage-2, with R denotes rendering, we enforce a non-saturating GAN loss with R1
regularization to train the texture generator (Karras et al., 2019; Skorokhodov et al., 2022):

LGAN = Eztex∼pG
[f(D(R(hθ(ztex, Xp))))] + EIreal∼pD

[f(−D(Ireal) + λ∥∆D(Ireal)∥2], (7)
where f(u) = −log(1 + exp (−u)).

4 EXPERIMENTS

4.1 DATASETS

CompCars & Photoshape. We used 3D shapes from ShapeNet’s ”chair” and ”car” cate-
gories (Chang et al., 2015). For the 2D datasets, we employed Compcars (Yang et al., 2015)
for cars and Photoshape (Park et al., 2018b) for chairs. Notably, the chair category includes subsets
with significantly different topologies, such as lounges and bean chairs, where finding a clear cor-
respondence may be challenging even for humans. Consequently, we evaluate our model and the
baselines’ performance on the ”straight chair” category, one of the largest subsets in the chair dataset.
For fair comparisons, we follow Texturify, splitting the 1,256 car shapes into 956 for training and 300
for testing. We apply the same split within the subset for the chair experiment, yielding 450 training
and 150 testing shapes. We also provide the evaluation of full Photoshape in Appendix F.

6

Table 1: Quantitative Results on CompCars. The symbol “†” denotes an instance-specific approach,
whereas the remaining methods employ category-wise training. Our method significantly improves
over all previous methods on all metrics. KID is multiplied by 102.

Method LPIPSg ↑ LPIPSt ↓ FID ↓ KID ↓
TexFields (Oechsle et al., 2019) - - 177.15 17.14
LTG (Yu et al., 2021b) - - 70.06 5.72
EG3D-Mesh (Chan et al., 2022) - - 83.11 5.95
Text2Tex (Chen et al., 2023)† - - 46.91 4.35
Texturify (Siddiqui et al., 2022) 9.75 2.46 59.55 4.97
EpiGRAF (Skorokhodov et al., 2022) 4.26 2.34 89.64 6.73

TUVF 15.87 1.95 41.79 2.95

DiffusionCats. The above real-world dataset assumes known camera pose distributions, such as
hemispheres. However, aligning in-the-wild objects into these specific poses can be time-consuming
and prone to inaccuracies. Therefore, we introduce a data generation pipeline that directly synthesizes
realistic texture images. We render depth maps from 3D shapes and convert these depth maps into
images using pre-trained diffusion models (Rombach et al., 2022; Zhang et al., 2023a). Next, we
determine the bounding box based on the depth map and feed this into an off-the-shelf segmentation
model (Kirillov et al., 2023) to isolate the target object in the foreground. This pipeline eliminates
the need for TUVF to depend on real-world image datasets, making it adaptable to other categories
with controllable prompts. For quantitative evaluation, we use 250 shapes of cats from SMAL (Zuffi
et al., 2017), which includes appearance variations and deformations, to create a new 2D-3D dataset
for texture synthesis through our data generation pipeline. We discuss the details of this pipeline in
Appendix P and samples of the generated dataset in Appendix Q.

4.2 BASELINES

Mesh-based Approaches. Texturfiy (Siddiqui et al., 2022) is a state-of-the-art prior work on texture
synthesis. They proposed using a 4-rosy field as a better representation for meshes. TexFields (Oechsle
et al., 2019), SPSG (Dai et al., 2021), LTG (Yu et al., 2021b), and EG3D-Mesh (Chan et al.,
2022) are all mesh-based baselines. These baselines follow a similar framework, where the texture
generators are conditioned on a certain shape geometry condition. The biggest difference among
these methods is that they use different representations. Specifically, the TexFields (Oechsle et al.,
2019) uses a global implicit function to predict texture for mesh, and SPSG (Dai et al., 2021) uses 3D
convolution networks to predict voxels for textures. EG3D-Mesh (Chan et al., 2022) uses the triplane
representation in EG3D (Chan et al., 2022) to predict the face colors for a given mesh. Note that all
baselines require explicit geometry encoding for texture synthesis. On the other hand, our method
relies on correspondence and does not directly condition texture on a given geometry. Furthermore,
our learned dense surface correspondence allows for direct texture transfer. We also compare with
a concurrent work, Text2Tex (Chen et al., 2023), which proposes an instance-specific approach for
texture synthesis using a pre-trained diffusion model.
NeRF-based Approach. We also evaluate our method against a state-of-the-art NeRF-based
approach, EpiGRAF (Skorokhodov et al., 2022), which employs a tri-plane representation and a
patch-based discriminator. To modify EpiGRAF into a texture generator for radiance fields, we follow
TexFields (Oechsle et al., 2019) and use a point cloud encoder to encode geometry information into
EpiGRAF’s style-based triplane generator. For fair comparison, we employ the same discriminator
and training hyper-parameters for EpiGRAF (Skorokhodov et al., 2022) and our method.

4.3 EVALUATION METRICS

LPIPSg and LPIPSt. We introduce two metrics to evaluate our model’s ability to disentangle
geometry and texture. The first metric, LPIPSg, is calculated by generating ten random latent
codes for each shape in the test set and measuring the diversity of the synthesized samples. If the
model struggles to disentangle, the generated samples may appear similar, leading to a lower LPIPS
score. For the second metric, LPIPSt, we measure the semantic consistency after texture swapping.
Specifically, we randomly sample four latent codes and transfer them among 100 test shapes. If a
model successfully disentangled the geometry and texture, all samples with the same texture code
should look semantically similar, leading to a lower LPIPS score.
FID and KID. In addition to LPIPSg and LPIPSt, we employ two standard GAN image quality and
diversity metrics, specifically the Frechet Inception Distance (FID) and Kernel Inception Distance

7

Table 2: Quantitative Results on Photoshape and DiffusionCats. While our method has slightly
larger FID and KID than Texturify on Photoshape, we achieve significantly better results in control-
lable synthesis. On the other hand, our method achieves better results in both visual quality and
controllable synthesis on DiffusionCats. KID is multiplied by 102.

Photoshape DiffusionCats

LPIPSg ↑ LPIPSt ↓ FID ↓ KID ↓ LPIPSg ↑ LPIPSt ↓ FID ↓ KID ↓

EpiGRAF (Skorokhodov et al., 2022) 7.00 3.14 65.62 4.20 5.37 1.98 196.01 19.10
Texturify (Siddiqui et al., 2022) 6.74 2.89 45.92 2.61 4.77 2.61 72.43 5.61

TUVF 14.93 2.55 51.29 2.98 11.99 1.50 64.13 3.56

Texturify

EpiGRAF

TUVF

Figure 4: Texture Transfer Comparison. Each approach applies the same texture code to synthesize
textures on different shapes. TUVF can obtain consistent textures across all shapes, while previous
approaches output different styles on different object shapes when using the same texture code.

(KID) scores. We follow Texturify’s setup in all experiments, training on 512×512 resolution images
and rendering images at a resolution of 512×512 and subsequently downsampling to 256×256 for
evaluation. We employ four random views and four random texture codes for all evaluations and
incorporate all available images in the FID/KID calculations.

4.4 RESULTS

Figure 5: Surface reconstruction with dense cor-
respondence. The color map indicates the cor-
respondence between each instance and the UV.
Please refer to Appendix A for further results.

Canonical Surface Auto-encoder. To the best
of our knowledge, our work represents the first
attempt to explore joint end-to-end canonical
point auto-encoder (Cheng et al., 2021) and
surface learning (Peng et al., 2021). A key
concern is the smoothness of the learned cor-
respondence and the reconstructed surface. We
construct and visualize the mesh using the pre-
dicted indicator function χ′, and without requir-
ing any proxy function (such as nearest neighbor
search), dense surface correspondence is readily
obtained. As a result of the Poisson surface reconstruction, P ′

j , which holds the correspondence,
naturally lies on the surface. In Figure 5 and Figure 7, we showcase that our reconstructed surface is
indeed smooth and that the correspondence is both dense and smooth as well.
Quantitative Texture Synthesis Results. We show the quantitative results on CompCars in Table 1,
the results on Photoshape and DiffusionCats in Table 2. For the CompCars and DiffusionCats datasets,
we achieve significant improvements over all the metrics. For the Photoshape dataset, while our
approach is slightly worse than Texturify in FID and KID, as for the fidelity metrics, we obtain much
better results on controllable synthesis. We further conduct a user study to evaluate the texture quality.
Two metrics are considered: (1) General: The users compare random renders from baselines and
our method, choosing the most realistic and high-fidelity method. (2) Transfer: The users compare
three random renders with the same texture code, selecting the most consistent across shapes. We use
Amazon Turk to collect 125 user feedback; the results are shown in Table 3.

Qualitative Texture Synthesis Results. We show our qualitative results for texture synthesis
in Figure 3, which confirms that textures generated by our approach are more visually appealing,
realistic, and diverse. EpiGRAF suffers from the redundancy of tri-plane representation, leading
to less sharp results. We also observe that the tri-plane representation fails when objects are thin
(e.g., cats). Our proposed method also shows better diversity and disentanglement than Texturify

8

Table 3: User study. Percentage of users who
favored our method over the baselines in a
user study with 125 responses.

Dataset Metric Texturify ↑ EpiGRAF ↑

CompCars General 82.40 85.60
Transfer 75.20 78.40

Photoshape General 74.40 80.00
Transfer 70.40 75.20

Table 4: Ablation with different architecture
designs for texture mapping function Evaluated
on CompCars. KID is multiplied by 102.

Architecture FID ↓ KID ↓

CIPS-2D (Anokhin et al., 2021) 148.09 13.38
StyleGAN2 (Karras et al., 2020b) 103.62 7.89

CIPS-UV (ours) 41.79 2.95

and EpiGRAF. We show texture transfer results in Figure 4, where Texturify and EpiGRAF failed to
transfer the texture on some samples. Please refer to Appendix B for more texture synthesis results.

Ablation study. We conducted an ablation study on different texture generator architectures using
the CompCars dataset. Two architectures were considered: CIPS-2D and StyleGAN2, the former
being the same as the one proposed in (Anokhin et al., 2021), and the latter being a popular choice
for both 2D and 3D GANs. Since the input to both generators is in 3D (i.e., sphere coordinates), an
equirectangular projection was first performed to transform the coordinates into 2D. We show the
results in Table 4, where CIPS-2D suffers from the explicit parameterization of unwrapping 3D to 2D.
Similarly, StyleGAN2 suffers from pixel-wise interaction operators that degrade its performance as
well. In contrast, our proposed generator design avoids explicit parameterization and operators that
bring interactions between pixels. By preserving 3D semantic information, our generator produces
realistic and diverse textures on the UV sphere. Please refer to Appendix H for more ablation studies.

Figure 6: Editing and Transfer Results. The disentangle-
ment ensures that the radiance field is independent of density
conditions, enabling us to fine-tune UV texture features with
sparse views. Please refer to Appendix C for more samples.

Texture Editing. Our method en-
ables texture editing by allowing di-
rect modification of rendered images,
such as drawing or painting. Given a
synthesized texture, one can directly
operate on the rendered view to edit
the texture. By fine-tuning the edited
image through back-propagation to
the texture feature, we can obtain an
edited texture that is 3D consistent
across different views. As shown in
Figure 6, after editing an image, we
can fine-tune its texture feature and
transfer it to different shapes.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we introduce Texture UV Radiance Fields for generating versatile, high-quality textures
applicable to a given object shape. The key idea is to generate textures in a learnable UV sphere space
independent of shape geometry and compact and efficient as a surface representation. Specifically,
we leverage the UV sphere space with a continuous radiance field so that an adversarial loss on top
of rendered images can supervise the entire pipeline. We achieve high-quality and realistic texture
synthesis and substantial improvements over state-of-the-art approaches to texture swapping and
editing applications. We are able to generate consistent textures over different object shapes while
previous approaches fail. Furthermore, we can generate more diverse textures with the same object
shape compared to previous state-of-the-arts.

Despite its merits, our method has inherent limitations. Our current correspondence assumes one-to-
one dense mapping. However, this assumption does not always hold in real-world scenarios. See
Appendix R for more discussion regarding the limitations. To further achieve more photorealistic
textures, one option is to incorporate advanced data-driven priors, such as diffusion models, which
can help mitigate the distortions and improve the quality of the generated textures. Utilizing more
sophisticated neural rendering architectures, such as ray transformers, can also enhance the results.

9

REFERENCES

Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempitsky, and Denis
Korzhenkov. Image generators with conditionally-independent pixel synthesis. In IEEE Conference
on Computer Vision and Pattern Recognition, pp. 14278–14287, 2021. 4, 9, 35

Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus Thies. Neural
rgb-d surface reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6290–6301, 2022. 3

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In IEEE International Conference on Computer Vision, pp. 5855–5864, 2021. 2

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In IEEE International Conference on Computer
Vision, 2023. 2

Pravin Bhat, Stephen Ingram, and Greg Turk. Geometric texture synthesis by example. In SGP, pp.
41–44, 2004. 3

Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J Black. Dynamic faust: Registering
human bodies in motion. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
6233–6242, 2017. 16

Gunilla Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(6):849–865, 1988. 4

Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and
Richard Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In European Conference on Computer Vision, pp. 608–625. Springer, 2020. 2

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5799–5809, 2021. 3

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d
generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 16123–16133, 2022. 2, 3, 7, 36

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint, 2015. 6, 16, 37

Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao
Su. Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In IEEE
International Conference on Computer Vision, pp. 14124–14133, 2021. 2

Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Nießner.
Text2tex: Text-driven texture synthesis via diffusion models. arXiv preprint, 2023. 3, 7

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. Neural
Information Processing Systems, 29, 2016. 3

Zhiqin Chen, Kangxue Yin, and Sanja Fidler. Auv-net: Learning aligned uv maps for texture transfer
and synthesis. In IEEE Conference on Computer Vision and Pattern Recognition, 2022. 3, 38

An-Chieh Cheng, Xueting Li, Min Sun, Ming-Hsuan Yang, and Sifei Liu. Learning 3d dense
correspondence via canonical point autoencoder. Neural Information Processing Systems, 34:
6608–6620, 2021. 4, 8, 31, 34, 38

10

An-Chieh Cheng, Xueting Li, Sifei Liu, Min Sun, and Ming-Hsuan Yang. Autoregressive 3d shape
generation via canonical mapping. In European Conference on Computer Vision, pp. 89–104.
Springer, 2022. 4, 31, 34

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui.
Sdfusion: Multimodal 3d shape completion, reconstruction, and generation. In IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4456–4465, 2023. 2

George R Cross and Anil K Jain. Markov random field texture models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 25–39, 1983. 3

Angela Dai, Yawar Siddiqui, Justus Thies, Julien Valentin, and Matthias Nießner. Spsg: Self-
supervised photometric scene generation from rgb-d scans. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1747–1756, 2021. 3, 7

Robert A Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. ACM SIGGRAPH, 22(4):
65–74, 1988. 2

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky,
and Aaron Courville. Adversarially learned inference. arXiv preprint, 2016. 35

Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sampling. In IEEE
International Conference on Computer Vision, volume 2, pp. 1033–1038. IEEE, 1999. 3

Simone Foti, Bongjin Koo, Danail Stoyanov, and Matthew J Clarkson. 3d shape variational au-
toencoder latent disentanglement via mini-batch feature swapping for bodies and faces. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 18730–18739, 2022. 3

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan
Gojcic, and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned
from images. In Neural Information Processing Systems, 2022. 3

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In Neural Information
Processing Systems, volume 27, 2014. 2, 3

Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia. Efficientnerf efficient neural radiance
fields. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 12902–12911, 2022.
5

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image
translation. In European Conference on Computer Vision, pp. 172–189, 2018. 3

Ananya Harsh Jha, Saket Anand, Maneesh Singh, and VSR Veeravasarapu. Disentangling factors of
variation with cycle-consistent variational auto-encoders. In European Conference on Computer
Vision, pp. 805–820, 2018. 3

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
4401–4410, 2019. 3, 4, 6, 35

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Neural Information Processing Systems, 33:
12104–12114, 2020a. 36

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8110–8119, 2020b. 9, 35

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint, 2013. 3

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. In IEEE International Conference on Computer Vision, 2023. 7, 37

11

Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski, and Tien-Tsin
Wong. Solid texture synthesis from 2d exemplars. In ACM SIGGRAPH, 2007. 3

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional
inverse graphics network. Neural Information Processing Systems, 28, 2015. 3

Jiaxin Li, Zijian Feng, Qi She, Henghui Ding, Changhu Wang, and Gim Hee Lee. Mine: Towards
continuous depth mpi with nerf for novel view synthesis. In IEEE International Conference on
Computer Vision, pp. 12578–12588, 2021a. 2

Ruihui Li, Xianzhi Li, Ka-Hei Hui, and Chi-Wing Fu. Sp-gan: Sphere-guided 3d shape generation
and manipulation. ACM Transactions on Graphics, 40(4):1–12, 2021b. 35

Andrew Liu, Shiry Ginosar, Tinghui Zhou, Alexei A Efros, and Noah Snavely. Learning to factorize
and relight a city. In European Conference on Computer Vision, pp. 544–561. Springer, 2020. 3

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. IEEE International Conference on Computer Vision, Oct 2019. 3

Emile Mathieu, Tom Rainforth, Nana Siddharth, and Yee Whye Teh. Disentangling disentanglement
in variational autoencoders. In ICML, pp. 4402–4412. PMLR, 2019. 3

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision, 2020. 2, 3

Jiteng Mu, Shalini De Mello, Zhiding Yu, Nuno Vasconcelos, Xiaolong Wang, Jan Kautz, and Sifei
Liu. Coordgan: Self-supervised dense correspondences emerge from gans. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 10011–10020, 2022. 3

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. Hologan:
Unsupervised learning of 3d representations from natural images. In IEEE International Conference
on Computer Vision, pp. 7588–7597, 2019. 2, 3

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3504–3515, 2020. 2

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture
fields: Learning texture representations in function space. In IEEE International Conference on
Computer Vision, pp. 4531–4540, 2019. 3, 7

Michael Oechsle, Songyou Peng, and Andreas Geiger. Unisurf: Unifying neural implicit surfaces
and radiance fields for multi-view reconstruction. In IEEE International Conference on Computer
Vision, pp. 5589–5599, 2021. 5

Jonathan Palacios and Eugene Zhang. Rotational symmetry field design on surfaces. ACM Transac-
tions on Graphics, 26(3):55–es, 2007. 3

Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M. Seitz. Photoshape: Photorealistic
materials for large-scale shape collections. ACM Transactions on Graphics, 37(6), November
2018a. 2

Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M. Seitz. Photoshape: Photorealistic
materials for large-scale shape collections. ACM Transactions on Graphics, 2018b. 6

Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei Efros, and Richard
Zhang. Swapping autoencoder for deep image manipulation. Neural Information Processing
Systems, 33:7198–7211, 2020. 3

Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens, and Aurelien Lucchi.
Convolutional generation of textured 3d meshes. Neural Information Processing Systems, 33:
870–882, 2020. 3

12

Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger.
Shape as points: A differentiable poisson solver. Neural Information Processing Systems, 34:
13032–13044, 2021. 5, 6, 8

Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent autoencoders.
In IEEE Conference on Computer Vision and Pattern Recognition, pp. 14104–14113, 2020. 3

Amit Raj, Cusuh Ham, Connelly Barnes, Vladimir Kim, Jingwan Lu, and James Hays. Learn-
ing to generate textures on 3d meshes. In IEEE Conference on Computer Vision and Pattern
RecognitionW, pp. 32–38, 2019. 3

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 10684–10695, 2022. 7, 37

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117,
2015. 4

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields
for 3d-aware image synthesis. Neural Information Processing Systems, 33:20154–20166, 2020. 2

Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Texturify:
Generating textures on 3d shape surfaces. In European Conference on Computer Vision, pp. 72–88.
Springer, 2022. 2, 3, 7, 8, 19, 22, 23, 26, 27, 28, 29, 30, 31

Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. Finegan: Unsupervised hierarchical
disentanglement for fine-grained object generation and discovery. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6490–6499, 2019. 3

Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Peter Wonka. Epigraf: Rethinking training of
3d gans. Neural Information Processing Systems, 2022. 2, 3, 5, 6, 7, 8, 26, 27, 28, 29, 30, 31, 32,
35, 36

Gabriel Taubin. A signal processing approach to fair surface design. In ACM SIGGRAPH, pp.
351–358, 1995. 3

Alex Trevithick and Bo Yang. Grf: Learning a general radiance field for 3d representation and
rendering. In IEEE International Conference on Computer Vision, pp. 15182–15192, 2021. 2

Greg Turk. Texture synthesis on surfaces. In ACM SIGGRAPH, pp. 347–354, 2001. 3

Naveen Venkat, Mayank Agarwal, Maneesh Singh, and Shubham Tulsiani. Geometry-biased trans-
formers for novel view synthesis. arXiv preprint, 2023. 2

Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang, et al. Is
attention all nerf needs? arXiv preprint, 2022. 2

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. Neural
Information Processing Systems, 2021. 2, 5

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics, 38(5):1–12,
2019. 4, 34, 35

Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, and Hao Su.
Neutex: Neural texture mapping for volumetric neural rendering. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7119–7128, 2021. 3

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neumann.
Point-nerf: Point-based neural radiance fields. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5438–5448, 2022. 2, 3, 5

13

Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda Zhang, Zhaopeng Cui, and Guofeng
Zhang. Neumesh: Learning disentangled neural mesh-based implicit field for geometry and texture
editing. In European Conference on Computer Vision, pp. 597–614. Springer, 2022. 3

Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. A large-scale car dataset for fine-grained
categorization and verification. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3973–3981, 2015. 2, 6

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron
Lipman. Multiview neural surface reconstruction by disentangling geometry and appearance.
Neural Information Processing Systems, 33:2492–2502, 2020. 2

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
Neural Information Processing Systems, 34:4805–4815, 2021. 2, 5

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields
from one or few images. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
4578–4587, 2021a. 2

Rui Yu, Yue Dong, Pieter Peers, and Xin Tong. Learning texture generators for 3d shape collections
from internet photo sets. In BMVC, 2021b. 3, 7

Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Zhengzhe Liu, and Xiaojuan Qi. Texture generation on 3d
meshes with point-uv diffusion. In IEEE International Conference on Computer Vision, 2023. 3

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten
Kreis. Lion: Latent point diffusion models for 3d shape generation. In Neural Information
Processing Systems, 2022. 2

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In ICML, pp. 7354–7363. PMLR, 2019. 4

Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. Ners: neural reflectance
surfaces for sparse-view 3d reconstruction in the wild. Neural Information Processing Systems, 34:
29835–29847, 2021. 2

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In IEEE International Conference on Computer Vision, 2023a. 7, 37

Yanshu Zhang, Shichong Peng, Alireza Moazeni, and Ke Li. Papr: Proximity attention point
rendering. In Neural Information Processing Systems, 2023b. 3

Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 3d menagerie: Modeling the
3d shape and pose of animals. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6365–6373, 2017. 7, 16

14

Appendix Table of Contents
A More Qualitative Results of Canonical Surface Auto-encoder... 16

B More Qualitative Results using our Data Generation Pipeline .. 17

C More Qualitative Results of Texture Editing ... 18

D More Qualitative Results of High-Resolution Synthesis ... 19

E More Qualitative Results of Texture Transfer ... 26

F More Quantitative Results on full Photoshape ... 31

G More Comparisons with EpiGRAF using Ground truth Geometry 32

H Ablation Study on Canonical Surface Auto-encoder... 33

I Ablation Study on Different UV Resolution ... 33

J Implementation Details of TUVF Rendering ... 34

K Implementation Details of Canonical Surface Auto-encoder ... 34

L Implementation Details of Texture Generator hθ CIPS-UV... 35

M Implementation Details of Patch-based Discriminator ... 35

N Training Details and Hyper-parameters... 35

O Computational Time and Model Size ... 36

P Implementation Details of Data Generation Pipeline.. 37

Q Samples of Our Generated Dataset... 37

R Limitations... 38

15

A MORE QUALITATIVE RESULTS OF CANONICAL SURFACE AUTO-ENCODER

Can our Canonical Surface Auto-encoder handle different topologies? We align with prior
works by evaluating our approach on two categories within ShapeNet (e.g., cars, chairs) for com-
parisons. While using a UV sphere adds constraints on representing shape varieties, our method
can still model reasonably diverse topologies. We additionally include the canonical surface auto-
encoding results on three different shape collections in Figure 7. Specifically, we include results on
ShapeNet (Chang et al., 2015) Airplanes (top), DFAUST (Bogo et al., 2017) (middle, scanned human
subjects and motions), and SMAL Zuffi et al. (2017) (bottom, articulated animals e.g., lions, tigers,
and horses). Our method consistently produces high-quality shape reconstructions with dense and
smooth learned correspondence, even for non-genus zero shapes such as airplanes with holes. This is
not achievable for traditional mesh-based UV deformation.

ShapeNet
(airplanes)

D-FAUST
(dynamic human

scans)

SMAL
(articulated

animals)

Figure 7: Surface Reconstruction Results on Different Datasets.

16

B MORE QUALITATIVE RESULTS USING OUR DATA GENERATION PIPELINE

We provide our texture synthesis results using Canonical Surface Auto-encoder trained on SMAL
(Appendix A) and 2D datasets generated by our data pipeline(Appendix P). As shown in Figure 8,
we demonstrate that our model can generate photorealistic textures for various animal categories.
With the pipeline, we can also control the style with different prompts. Note that for simplicity, some
results in the figure are trained on a single instance or view, indicated by grey text.

A DLSR image of a dog, shiba, Shiba Inu,
high quality, high res

A DLSR image of a cat, tabby cat,
high quality, high res

Texture Transfer
(horse → cow)

(multi-view/single instance)

(single-view/multi instances)

(single-view/single instance)

(single-view/single instance)

A DLSR image of a horse, pony, Gaited
high quality, high res

A DLSR image of a dairy cow, Holstein,
high quality, high res

Figure 8: Texture Synthesis Results on SMAL. We include results using horses, cows, cats, and dogs.
We also transfer a texture from a horse to a cow using correspondence learned from Appendix A.

17

C MORE QUALITATIVE RESULTS OF TEXTURE EDITING

Figure 9: Texture Editing and Transfer. Our approach offers exceptional flexibility when it comes
to texture editing. We support a range of texture editing techniques, including texture swapping,
filling, and painting operations. Given a synthesized texture, one can directly operate on the rendered
view to edit the texture (as illustrated by the green box). By fine-tuning the edited image using
the back-propagation to the texture feature, we can obtain an edited texture that is 3D consistent
across different views (as shown in the blue box). Moreover, this edited texture feature can also be
transferred among different shapes (as demonstrated by the red box).

18

D MORE QUALITATIVE RESULTS OF HIGH-RESOLUTION SYNTHESIS

Figure 10: Our results on Compcars dataset. The model is trained with 512×512 resolution,
images shown are rendered with 1024×1024 resolution. Compared to Texturify Siddiqui et al. (2022)
(results shown in Figure 13 and Figure 14), our texture synthesis approach produces textures with
superior detail. Notably, our generator is capable of synthesizing intricate features such as logos,
door handles, car wipers, and wheel frames. Zoom in for the best viewing.

19

Figure 11: Our results on Compcars dataset. The model is trained with 512×512 resolution,
images shown are rendered with 1024×1024 resolution. Note that all the images are rendered from
the same instance, including images in Figure 10 and Figure 12. This highlights the effectiveness
of our proposed method in synthesizing photo-realistic textures while maintaining 3D consistency.
Zoom in for the best viewing.

20

Figure 12: Our results on Compcars dataset. The model is trained with 512×512 resolution,
images shown are rendered with 1024×1024 resolution. In addition to generating different global
colors, our proposed method can generate diverse textures by including intricate local details. For
example, the generated textures may include unique logos (different from those shown in Figure 11)
or distinct tail light styles (different from Figure 10). Zoom in for the best viewing.

21

Figure 13: Texturify Siddiqui et al. (2022) results on Compcars dataset. The model is trained
with 512×512 resolution, images shown are rendered with 1024×1024 resolution. The sample shown
in this figure was generated using the pre-trained model provided by the authors. Notably, all the
images in this figure depict different render angles of the same instance.

22

Figure 14: Texturify Siddiqui et al. (2022) results on Compcars dataset. The model is trained
with 512×512 resolution, images shown are rendered with 1024×1024 resolution. The sample shown
in this figure was generated using the pre-trained model provided by the authors. Notably, all the
images in this figure depict different render angles of the same instance.

23

Figure 15: Our results on Photoshape dataset. The model is trained with 512×512 resolution,
images shown are rendered with 1024×1024 resolution. Our model is highly effective in synthesizing
top-quality textures for chairs. Interestingly, the generated textures may even feature a variety of
material styles, such as black leather, suede fabric, or flannel (see Figure 16), adding an extra level of
realism to the textures. Zoom in for the best viewing.

24

Figure 16: Our results on Photoshape dataset. The model is trained with 512×512 resolution,
images shown are rendered with 1024×1024 resolution. Thanks to the correspondence learned from
our Canonical Surface Auto-encoder, textures can be generated without interference from geometry
information. Furthermore, the model can predict accurate textures for different parts of the object.
For instance, the legs of the chair may have distinct textures from the seats, and the boundary between
these two parts is clearly defined. This demonstrates the importance of the correspondence learned
from the Canonical Surface Auto-encoder. Zoom in for the best viewing.

25

E MORE QUALITATIVE RESULTS OF TEXTURE TRANSFER

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Figure 17: Texture Transfer Results on CompCars dataset. Each approach (in the same row) ap-
plies the same texture code to synthesize textures on different input shapes. Our method can generate
textures that exhibit consistency across all shapes, unlike other approaches (e.g., Texturify Siddiqui
et al. (2022) and EpiGRAF Skorokhodov et al. (2022)), which may produce different styles or local
details on different object shapes even when using the same texture code.

26

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Figure 18: Texture Transfer Results on CompCars dataset. Each approach (in the same row) ap-
plies the same texture code to synthesize textures on different input shapes. Our method can generate
textures that exhibit consistency across all shapes, unlike other approaches (e.g., Texturify Siddiqui
et al. (2022) and EpiGRAF Skorokhodov et al. (2022)), which may produce different styles or local
details on different object shapes even when using the same texture code. Consider the results shown
in row 4 of the figure. While the samples generated by the Texturify Siddiqui et al. (2022) method
exhibit consistency in global color (i.e., all the cars are red), the same texture code may result in
different window styles (i.e., number of windows).

27

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Figure 19: Texture Transfer Results on CompCars dataset. Each approach (in the same row) ap-
plies the same texture code to synthesize textures on different input shapes. Our method can generate
textures that exhibit consistency across all shapes, unlike other approaches (e.g., Texturify Siddiqui
et al. (2022) and EpiGRAF Skorokhodov et al. (2022)), which may produce different styles or local
details on different object shapes even when using the same texture code.

28

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Figure 20: Texture Transfer Results on Photoshape dataset. Each approach (in the same row) ap-
plies the same texture code to synthesize textures on different input shapes. Our method can generate
textures that exhibit consistency across all shapes, unlike other approaches (e.g., Texturify Siddiqui
et al. (2022) and EpiGRAF Skorokhodov et al. (2022)), which may produce different styles or local
details on different object shapes even when using the same texture code.

29

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Texturify

EpiGRAF

Ours

Figure 21: Texture Transfer Results on Photoshape dataset. Each approach (in the same row) ap-
plies the same texture code to synthesize textures on different input shapes. Our method can generate
textures that exhibit consistency across all shapes, unlike other approaches (e.g., Texturify Siddiqui
et al. (2022) and EpiGRAF Skorokhodov et al. (2022)), which may produce different styles or local
details on different object shapes even when using the same texture code.

30

F MORE QUANTITATIVE RESULTS ON FULL PHOTOSHAPE

We report results on the full Phtoshape dataset in Table 5, showcasing superior controllable synthesis
but higher FID and KID values compared to Texturify. Similar to prior works (Cheng et al., 2021;
2022), our method builds upon learnable UV maps, assuming one-to-one dense correspondence
between instances of a category. However, in real-world scenarios, this assumption does not always
hold: There may be variations in shape (e.g., armchairs and straight chairs) or structure (e.g., lounges
and bean chairs) across different instances. This introduces challenges in modeling high-fidelity
shapes and detailed correspondences at the same time. Despite these challenges, our method produces
reasonable results, as depicted in Figure 22.

Table 5: Quanitative Results on Full Photoshape. While our method has slightly larger FID and
KID than Texturify on full Photoshape, we achieve significantly better results in controllable synthesis.
KID is multiplied by 102.

Method FID ↓ KID ↓ LPIPSg ↑ LPIPSt ↓
EpiGRAF (Skorokhodov et al., 2022) 89.74 6.28 3.63 6.51
Texturify (Siddiqui et al., 2022) 26.17 1.54 8.86 3.46

TUVF (ours) 57.56 3.74 16.43 2.72

Figure 22: Qualatative Results on Full Photoshape. Although finding correspondence for shapes
with large structural differences is challenging, our method produces reasonable results.

31

(a) (b)

(c) (d)

Figure 23: Visualization of the ablation study over the Canonical Surface Auto-encoder. The four
sub-figures correspond to the four settings introduced in Section H. Zoom in for the best viewing.

G MORE COMPARISONS WITH EPIGRAF USING GROUND TRUTH GEOMETRY

For a fair comparison, we use the auto-encoded geometry as the input for both EpiGRAF (Sko-
rokhodov et al., 2022) and our method. This ensures that both approaches utilize the same geometry.
Below, we provide the results comparing our method to EpiGRAF while employing the ground-truth
SDF for EpiGRAF.

Table 6: Comparisons with EpiGRAF using Groundtruth Geometry. KID is multiplied by 102.

Dataset Method FID ↓ KID ↓ LPIPSg ↑ LPIPSt ↓

CompCars EpiGRAF (Skorokhodov et al., 2022) 88.37 6.46 4.23 2.31
TUVF (ours) 41.79 2.95 15.87 1.95

Photoshape EpiGRAF (Skorokhodov et al., 2022) 55.31 3.23 7.34 2.61
TUVF (ours) 51.29 2.98 14.93 2.55

32

Table 7: Ablation Study over Canonical Surface Auto-encoder. Evaluated on CompCars.

Method Mapping Direction GT Geometry Proxyless Surface Smootheness FID ↓ KID ↓
(a) (base) UV → Surface ✓ ✓ 41.79 2.95
(b) UV → Surface ✓ ✓ 61.81 4.08
(c) UV → Surface ✓ ✓ 79.43 6.16
(d) Surface → UV ✓ ✓ 139.19 12.92

H ABLATION STUDY ON CANONICAL SURFACE AUTO-ENCODER

One drawback of our framework is that the auto-encoded indicator grid may not be perfect. As
a result, we investigated several different network designs for the stage-1 geometry pre-training,
which enabled us to learn texture synthesis using the ground-truth indicator function. We considered
comparing four settings in this study:

(a) Our Canonical Surface Auto-encoder. The geometry network takes UV points as inputs
and maps them to the surface. An additional function gθ is learned to predict the surface
normal for each point, and an auto-encoded indicator function is obtained. Texture synthesis
is performed using the auto-encoded indicator function.

(b) The geometry network takes UV points as inputs and maps them to the surface. No gθ is
used. Texture synthesis is performed using the ground-truth indicator function.

(c) The geometry network takes UV points as inputs and maps them to the surface. No gθ is
used. Texture synthesis uses the ground-truth indicator function, while points are warped to
the ground-truth surface via the nearest neighbor.

(d) The geometry network takes surface points as inputs and maps them to the UV. In this case,
there is no need for gθ, and texture synthesis is learned using the ground-truth indicator
function.

Two important factors may affect the quality of synthesis. First, the surface points should lie as close
to the exact surface of the indicator function as possible. This is because our MLPF takes the nearest
neighbor feature and the distance between the query point and the nearest neighbor as inputs. If there
is a gap between the points and the surface of the indicator function, it can confuse MLPF and harm
the performance. Secondly, the surface points should be as smooth as possible, i.e., evenly distributed
among the surface. This ensures that each surface point contributes to a similar amount of surface area.
The results of our ablation study on the car category can be found in Table 7. We also show samples
from each setting in Figure 23. The results obtained for settings without smooth correspondence (e.g.,
setting 3 and 4) show that the textures are more blurry and tend to have distortions. On the other
hand, our method produces sharper details compared to setting 2, which is trained on proxy surface
points. This study demonstrates the unique advantage of our Canonical Surface Auto-encoder design,
in which we can learn UV-to-surface mapping with smooth correspondence. Therefore, learning
an additional function gθ to predict point normal and obtain an auto-encoded indicator function is
necessary to obtain high-fidelity textures.

I ABLATION STUDY ON DIFFERENT UV RESOLUTION

UV Resolution FID ↓ KID ↓
2K (base) 41.79 2.95
1K 43.65 3.01

Table 8: Ablation Study over different UV resolution. Evaluated on the CompCars dataset.

We investigated the effect of UV resolution on the quality of our method. To achieve this, we
compared our base method with different numbers of UV resolution (1K and 2K). The results
in Table 8 showed that increasing the UV resolution leads to improved performance in terms of

33

producing higher-quality fine-scale details. However, we found that using level 4 ico-sphere vertices
(i.e., 2K points) is sufficient to achieve high-quality results. Further increasing the resolution would
result in prohibitively long training times due to the K nearest neighbor search. For example, using
level 5 ico-sphere vertices would result in 10242 points, which would significantly slow down the
training speed.

J IMPLEMENTATION DETAILS OF TUVF RENDERING

To obtain samples from the UV sphere, we use the vertices of a level 4 ico-sphere, which provides us
with 2562 coordinates. After passing these coordinates through the mapping functions fθ, gθ, and
hθ, we obtain 2562 surface points (Xp′), 2562 surface normal (Np′), a 1283 indication function grid
(χ′), and 2562 32-dimensional texture feature vectors. To compute the final color of a ray, we first
sample 256 shading points and identify the valid points using the indication function grid χ′. Next,
we sample three valid shading points around the surface, and for each valid shading location xi, we
conduct a K-nearest neighbor search on the surface points Xp′ . We perform spatial interpolation of
the texture feature on the K-nearest surface points to obtain the texture feature cxi

for the current
shading points xi. In our experiment, we set K to 4, which is not computationally expensive since we
only deal with 2562 surface points.

K IMPLEMENTATION DETAILS OF CANONICAL SURFACE AUTO-ENCODER

Figure 24: Architecture of our Shape Encoder E .

Shape Encoder E . Given a 3D object O, we first normalize the object to a unit cube and sample
4096 points on the surface as inputs to the Shape Encoder E Cheng et al. (2021). The encoder
structure is adopted from DGCNN Wang et al. (2019), which contains 3 EdgeConv layers using
neighborhood size 20. The output of the encoder is a global shape latent zgeo ∈ Rd where d = 256.

Figure 25: Architecture of our Surface Points Decoder fθ and Surface Normal Decoder gθ.

Surface Points Decoder fθ and gθ. Both the surface points decoder fθ and surface normal decoder
gθ share the same decoder architecture, which is adapted from Cheng et al. (2022). We show the
detailed architecture of our decoder in Figure 25. The decoder architecture takes a set of point
coordinates Xin and geometry feature zgeo as input and learns to output a set of point coordinates
Xout in a point-wise manner. To process a set of point coordinates Xin and geometry feature zgeo,
the decoder first creates a matrix by duplicating zgeo for each coordinate in Xin and concatenating
it to each coordinate. This matrix includes both the point coordinates and geometry features. The

34

decoder has two branches: one branch uses an EdgeConv Wang et al. (2019) with an attention module
to extract point-wise spatial features from the point coordinates. The attention module is adopted
from Li et al. (2021b), which regresses additional weights among the K point neighbors’ features
as attentions. The other branch employs a nonlinear feature embedding technique to extract style
features from the geometry feature. The local styles are then combined with the spatial features using
adaptive instance normalization Dumoulin et al. (2016) to create fused features. The style embedding
and fusion process is repeated, and finally, the fused feature is used to predict the final output Xout.
It is worth noting that both the surface points decoder fθ and surface normal decoder gθ use the same
geometric features as input. However, they differ in their coordinate input. Specifically, fθ takes
2562 UV coordinates as input, while gθ uses the 2562 output coordinates from fθ as input.

L IMPLEMENTATION DETAILS OF TEXTURE GENERATOR hθ CIPS-UV

Figure 26: Architecture of our UV texture feature generator hθ. A denotes the Affine Transfor-
mation module Karras et al. (2019), ModFC denotes modulated fully connected layers, and tFeat
denotes temporary features.

Our generator network, which has a multi-layer perceptron-type architecture Anokhin et al. (2021), is
capable of synthesizing texture features on a UV sphere. To achieve this, we use a random texture
latent vector ztex that is shared across all UV coordinates, as well as the UV coordinates (u, v, w)
as input. The generator then returns the 32-dim texture feature vector value c for that particular
UV coordinate. Thus, to compute the entire UV sphere, the generator is evaluated at every pair of
coordinates (u, v, w) while keeping the texture latent vector ztex fixed. Specifically, we utilize a
mapping network to convert the random texture latent vector ztex into a style vector with the same
dimension as ztex. This vector injects style into the generation process through weight modulation.
We follow the Fourier positional encoding method outlined in Anokhin et al. (2021) to encode the
input UV coordinates. The resulting coordinate features pass through the modulated fully connected
layers (ModFC), which are controlled by the style vector mentioned above. Finally, we obtain a
32-dimensional texture feature for the input coordinate.

M IMPLEMENTATION DETAILS OF PATCH-BASED DISCRIMINATOR

Our discriminator is based on EpiGRAF Skorokhodov et al. (2022), which is similar to the one used in
StyleGAN2 Karras et al. (2020b), but modulated by the patch location and scale parameters. We follow
the patch-wise optimization approach for training, along with using Beta distribution Skorokhodov
et al. (2022) for sampling the scale. We use an initial beta value of 1e−4 and gradually anneal it to
0.8 after processing 1e7 images.

N TRAINING DETAILS AND HYPER-PARAMETERS

To demonstrate the training pipeline, we use the car category in ShapeNet and the CompCars dataset
as examples. All experiments are performed on a workstation equipped with an AMD EPYC 7542
32-Core Processor (2.90GHz) and 8 Nvidia RTX 3090 TI GPUs (24GB each). We implement our
framework using PyTorch 1.10. For further details and training time for each stage, please refer to
Algorithm 1.

35

Algorithm 1 : The training phase of our approach consists of two stages: (1) Canonical Surface
Auto-encoder (2) Texture Feature Generator using adversarial objectives

(A) CANONICAL SURFACE AUTO-ENCODER ▷ 12 hours on ShapeNet Car dataset

1: Sub-sample points from the input point clouds as x and the canonical UV sphere π;
2: Compute ground-truth indicator function grid χ;
3: Initialize weights of the encoder E , decoder fθ and gθ;
4: while not converged do
5: foreach iteration do
6: zgeo ← E(x);
7: x̂← fθ([πi, zgeo]), where πi ∈ π;
8: n̂← gθ([x̂i, zgeo]), where x̂i ∈ x̂;
9: χ′ ← dpsr(x̂, n̂);

10: Obtain reconstruction loss LCD(x̂, x) and LDPSR(χ
′, χ);

11: Update weight;

(B) TEXTURE FEATURE GENERATOR ▷ 36 hours on CompCars dataset

1: Sample points from the canonical sphere π;
2: Random sample shapes with point cloud x and images from dataset Ireal;
3: Load pre-trained encoder E , fθ and gθ;
4: Initialize weights of the texture feature generator hθ and patch-based discriminator D;
5: while not converged do
6: foreach iteration do
7: Obtain x̂, n̂, and χ′ with encoder E , fθ and gθ;
8: Sample ztex from multivariate normal distribution;
9: ci ← hθ(πi, ztex), where πi ∈ π;

10: Ifake ← R(x̂, c, χ′, d), whereR denotes renderer and d are camera angles;
11: Obtain loss LGAN (Ifake, Ireal);
12: Update weight;

N.1 DATA AUGMENTATIONS AND BLUR.

Direct applying the discriminator fails to synthesize reasonable textures since there exists a geometric
distribution shift exists bet collection and rendered 2D images. Therefore, following (Chan et al.,
2022; Skorokhodov et al., 2022), we apply Adpative Discriminator Augmentation (ADA) (Karras
et al., 2020a) to transform both real and fake image crops before they enter the discriminator.
Specifically, we use geometric transformations, such as random translation, random scaling, and
random anisotropic filtering. However, we disable color transforms in ADA as they harm the
generation process and result in undesired textures. In addition to ADA, we also blur the image crops,
following (Chan et al., 2022; Skorokhodov et al., 2022). However, since we use larger patch sizes,
we employ a stronger initial blur sigma (i.e., 60) and a slower decay schedule, where the image stops
blurring after the discriminator has seen 5× 106 images.

O COMPUTATIONAL TIME AND MODEL SIZE

Table 9: The parameter size and inference time for different models. Inference time is measured
in seconds.

Method Representation Feature Parameterization Model Size ↓ Inference Time ↓
Texturify Mesh 24K Faces 52M 0.2039
EpiGRAF NeRF 128×128 Triplanes 31M 0.2537
Ours NeRF 2K Point Clouds 9M 0.3806

We provide a comparison of the inference time and model size of different models in Table 9.
Specifically, we measure the inference time and size of each model based on the time and number

36

of parameters required to generate a texture for a given shape instance and render an image of
resolution 1024. All experiments are conducted on a workstation with an Intel(R) Core(TM) i7-
12700K (5.00GHz) processor and a single NVIDIA RTX 3090 TI GPU (24GB). Texturify is a
mesh-based approach and is more efficient in terms of rendering compared to NeRF-based methods.
However, its feature space is heavily parameterized on the faces, which makes it memory inefficient.
Similarly, EpiGRAF requires computing high-resolution triplanes, making it memory-intensive. In
contrast, we only parametrize on 2K point clouds throughout all the experiments and can achieve
comparable or even better fidelity. Note that we use the same rendering approach for both TUVF and
EpiGRAF; therefore, EpiGRAF has a lower inference time than TUVF because it does not require
KNN computation.

P IMPLEMENTATION DETAILS OF DATA GENERATION PIPELINE

We utilized Stable Diffusion models Rombach et al. (2022) to generate realistic texture images,
which were subsequently used as training data for TUVF. We start by rendering depth maps from
synthetic objects using Blender and converting these depth maps into images using depth-conditioned
Controlnet Zhang et al. (2023a). If the 3D shape contains object descriptions in its metadata (e.g.,
ShapeNet (Chang et al., 2015)), we use the description as text prompt guidance. After generating
the image, we determine the bounding box based on the depth map and feed this into the Segment
Anything Model (SAM) Kirillov et al. (2023) to mask the target object in the foreground. This results
in realistic textures for synthetic renders. Our pipeline eliminates the need for perfectly aligned
cameras and mitigates differences between 3D synthetic objects and 2D image sets. We will release
our automatic data generation pipeline upon publication.

Figure 27: Examples of 2D Images Generated by our dataset pipeline. Zoom-in is recommended.

Q SAMPLES OF OUR GENERATED DATASET

We show samples of the depth map and its corresponding 2D images that Controlnet generated on
four categories (e.g., cats, horses, dogs, airplanes, and cars). Our pipeline can automatically generate
realistic and high-quality (1024× 1024) 2D textured images for 3D models. For the DiffusionCat
dataset, we use 250 shapes from SMAL, and split them into 200 for training and 50 for testing. We
use all 250 shapes to generate textured images. Specifically, we generate 2 samples for eight views
for each shape, which results in 4000 images. We use 20 denoise steps for Controlnet, and the entire
process takes less than 12 hours for a single Nvidia GeForce RTX 3090.

37

R LIMITATIONS

(i) Fail to reconstruct fine details with complex topology.

(ii) Incorrect correspondences near part boundaries.

Figure 28: Visualization of Failure Cases.

Geometry. Our work has some limitations inherited from Cheng et al. (2021) since our Canonical
Surface Auto-encoder follows similar principles. Specifically, encoding the shape information of
a point cloud in a global vector may cause fine details, such as corners and edges, to be blurred or
holes to disappear after reconstruction. Similar to Cheng et al. (2021), we also observed that the
correspondences predicted near holes or the boundaries between parts might be incorrect, possibly
due to the sparsity nature of point clouds and the limitations of the Chamfer distance. Future research
should address these limitations.

Characteristic Seams. Seams are barely noticeable in our results. There are three reasons. Firstly,
unlike prior works (Chen et al., 2022), we avoid cutting the shape into pieces and instead use a unified
UV across all parts, resulting in a seamless appearance without any distinct boundaries. Secondly, our
UV mapper employs a non-linear mapping function trained with Chamfer loss, seamlessly connecting
the UV coordinates without explicit stitching lines. Thirdly, unlike prior works that directly regress
RGB values using UV features or RGB information alone, our MLPF also takes the local coordinate
as an additional input, representing a local radiance field that effectively reduces the seams. However,
these design choices do not completely solve the seam issue. As illustrated in Figure 23, unsmooth
correspondence can still result in visible seams.

38

