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We present Spatial Region 3D (SR-3D) aware vision-language model that connects single-view 2D images
and multi-view 3D data through a shared visual token space. SR-3D supports flexible region prompting,
allowing users to annotate regions with bounding boxes, segmentation masks on any frame, or directly
in 3D, without the need for exhaustive multi-frame labeling. We achieve this by enriching 2D visual
features with 3D positional embeddings, which allows the 3D model to draw upon strong 2D priors for
more accurate spatial reasoning across frames, even when objects of interest do not co-occur within
the same view. Extensive experiments on both general 2D vision language and specialized 3D spatial
benchmarks demonstrate that SR-3D achieves state-of-the-art performance, underscoring its effectiveness
for unifying 2D and 3D representation space on scene understanding. Moreover, we observe applicability
to in-the-wild videos without sensory 3D inputs or ground-truth 3D annotations, where SR-3D accurately
infers spatial relationships and metric measurements. o
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Among Region o, Region e, Region 0, Region
@, which pillow is closest to the refrigerator?

I'm planning to buy some bonsais to decorate my
space in Region @). Do you have any advice on

If you are standing next to the cabinet and looking at
the pillow beside you, in which direction will the

species based on the size of the area?

The area in Region @ is 1.2 meters wide, so you can
consider bonsai trees that are smaller in size. Some
popular species for bonsai include the Japanese
Maple, Chinese Elm, and Dwarf hinoki Cypress. These
trees are known for their compact growth habit and
can be easily shaped into small, artistic forms.

Based on the spatial dimension of Region @, Region
© Region @, Region @), can you try to estimate the
area of the living room in square meters?

The living room seems to be approximately 10-12 feet
wide and 15-20 feet deep, which would give it a total
area of around 150-240 square feet. This is equivalent
to about 14-22 square meters.

Region € is the closest.

Please compare the vertical dimensions of Regione
and Regione; which is taller?

With more height is Region ).

What is the distance between Region (@ and Region @)?
Region (@ and Region @) are 16.12 feet apart.

If you are standing right next to Region @ and facing
Region (), where will the mirror be? To your right,
your left, or behind you?

Behind.

refrigerator be? Front left, front right, back left, or back
right?

Front left.
Measuring from the closest point of the objects, which
of these objects (fireplace, blue pillow, orange pillow,

white pillow, cabinet) is closest to the colorful
painting hanging on the wall?

The blue pillow.
Measuring from the closest point of the objects, what

is the distance between the cabinet and the
refrigerator in meters?

4.0

Figure 1 From precise region-based distance estimation (left), to intricate multi-view region query (middle), and
global cross-frame reasoning (right), SR-3D delivers flexible and accurate spatial understanding to foundational
Vision-Language Models. Notably, this video is obtained in the wild, without sensory 3D inputs, showcasing
the remarkable generalization capability of our model.
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1 Introduction

The rapid advancement of Vision Language Models (VLMs) [1-6] has demonstrated strong capabilities
in visual understanding [7, 8] and language grounding [9]. However, extending these strengths to
3D-aware spatial reasoning remains challenging. Foundational 2D VLMs excel at interpreting planar
images, but generally lack mechanisms to capture complex 3D structural relationships. In contrast,
most 3D VLMs [10-14] operate in a fundamentally different representation space, making it difficult
to leverage the prior knowledge from foundational 2D VLMs. Their performance is often hindered by
limited 3D training data. Moreover, specifying spatial relationships solely through language can be
cumbersome in cluttered scenes, e.g., multiple objects of the same category can coexist. A more direct
way of specifying object instances is highly desirable.

To mitigate these challenges, recent efforts adopt multi-view images as a 3D representation that aligns
seamlessly with the input space of foundational 2D VLMs [15, 16]. Unlike point clouds [11-13] which
require extensive data collection and model alignment, a multi-view approach leverages strong 2D
priors for 3D scene understanding. To specify object instances during reasoning, region prompts have
proven effective in single-view VLMs [17-20]. However, extending region prompting to multi-view
settings remains challenging. Specifically, an object may appear across different views with varying
visibility, making comprehensive multi-frame or 3D bounding box annotation tedious and text-based
queries imprecise. Ideally, a practical 3D-aware VLM should allow straightforward region annotations,
such as marking a bounding box on a single frame, while still accurately reasoning about spatial
relationships across the entire multi-view scene.

Thus, we introduce SR-3D, a unified visual representation for 3D spatial understanding that leverages
robust 2D foundational priors and supports flexible region prompting. In contrast to previous approaches
that incorporate positional information only at 3D finetune stages [16], or in different pathways [15],
we directly integrate positional embeddings within the foundational VLM. Specifically, we estimate
each input image’s depth using an off-the-shelf depth estimator [21] and transform this depth map
into normalized 3D positional embeddings. For multi-view inputs representing a coherent scene, we
further unify these positional embeddings into a common 3D coordinate space using either provided
ground-truth camera poses or a point cloud estimator [22—-24] when only video inputs are available.
Additionally, we incorporate region tokens directly into user prompts and train these region embeddings
consistently at both the foundational single-view stages and the multi-view fine-tuning stage. Since the
foundational VLM employs a dynamic tiling-based visual encoder [6, 25], we design a novel branch
specifically compatible with this architecture to produce robust region embeddings.

The SR-3D architecture naturally supports flexible region annotation, enabling users to specify regions
on any chosen frame. This practical capability arises from two key design choices: first, the consistent
3D positional embeddings in a canonical space enable the model to find coherent correspondences
across frames; Second, the aligned embedding space from the foundational single-view stage naturally
enables region embeddings to generalize effectively to the multi-frame contexts. As compelling evidence,
our 2D-VLM trained exclusively on single-view data exhibits strong zero-shot spatial reasoning in 3D
scenes, both with and without region prompts, despite never having been trained on multi-view data.

We conduct extensive evaluations across single-view and 3D multi-view settings, covering both region-
level and global question-answering, each with general and spatial-related tasks. Our experiments
demonstrate significant improvements in region-level performance. Specifically, our foundational
2D-VLM outperforms prior state-of-the-art methods by a large margin on region-level tasks, excelling in
both recognition and spatial understanding. Additionally, we evaluate it on general VQA benchmarks
and show that these improvements come without compromising overall VQA performance while also



bringing benefits for general tasks that require spatial knowledge. For the 3D fine-tuned VLM, our
model establishes new state-of-the-art results across general 3D question-answering, 3D video spatial
understanding, and video region-level spatial tasks.

Our contributions are as follows:

* We introduce SR-3D, the first 3D-aware vision-language model that unifies representations for
both single-view and multi-view tasks.

* We propose a dynamic tiling-based region extractor that handles high-resolution images and
produces robust region embeddings. Our unified embedding space enables region representations
trained on 2D images to generalize towards multi-view context.

* SR-3D achieves state-of-the-art results in general 3D QA, video spatial reasoning, and region-based
video tasks, demonstrating strong generalization and scalability.

* We demonstrate real-world applications where our model effectively handles in-the-wild captured
videos without 3D annotations (Figure 1), and can be flexibly prompted with region-level inputs.

2 Related Work

Region-level Vision-Language Models. Region-level VLMs enhance fine-grained visual understanding
by focusing on specific regions in images and videos. Early methods [26-29] represent regions as text
using bounding box coordinates, making integration easy but relying on the language decoder for
spatial reasoning. Others use visual markers like SoM [30], which overlay numbers and masks but alter
image appearance and require rule-based placement. Another approach maps region features into LLM
tokens using Rol-aligned features [20, 31-36], with RegionGPT [17] and Osprey [19] refining this by
pooling pixel-level mask features for flexible region shapes. However, they struggle with resolution and
aspect ratio constraints. In the video domain, various representations [37-41] have been explored, but
they mainly focus on tracking rather than multi-view spatial reasoning.

Spatial Reasoning in Vision-Language Models. Vision-language models have a strong visual under-
standing because they integrate the reasoning abilities of LLMs with powerful vision foundation models.
Recently, there has been growing interest in equipping VLMs with spatial reasoning capabilities [42-53].
While most previous work has focused on spatial understanding from 2D images, multi-view spatial
reasoning remains less explored. Recently, VSI-Bench [54] was introduced as a testbed for evaluating
models’ 3D video-based spatial understanding. Our work extends this direction by proposing a unified
3D-aware architecture and representation that seamlessly supports both images and videos.

3D Large Multimodal Models. Our work also relates to recent advancements in 3D LMMs [10, 11,
14, 55-59]. Various 3D representations have been explored to integrate position information into
LLMs. 3D-LLM [10] and Scene-LLM [58] use multi-view images with object segmentation masks to
construct pixel-aligned point representations, while LL3DA [14] directly employs a point cloud encoder
to extract 3D scene features. LEO [11] and Chat3D [59] segment objects from the scene’s point cloud
and extract object features to represent the environment. These methods typically transform 3D scenes
into voxel or point representations, but such approaches often limit the effectiveness of LLMs. Aligning
these representations with LLMs requires vast amounts of data, which is challenging due to the scarcity
of large-scale 3D datasets. Moreover, many of these methods rely on off-the-shelf 3d detection or
segmentation models, which inherently constrain performance.

The most closely related works to ours are LLaVA-3D [15] and Video-3D-LLM [16], which also incorpo-
rate 3D position-aware features into 2D vision-language models. However, LLaVA-3D processes 3D and
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Figure 2 The SR-3D architecture. Given an image or multi-view input with optional region prompts (e.g.,
bounding boxes or masks), we encode them along with depth-derived positional embeddings using a tiling
approach. Region tokens are extracted by stitching masked features, while 3D positional embeddings are mapped
to a shared canonical space in the multi-view setting, as shown on the bottom right.

2D data through separate pathways, while Video-3D-LLM fine-tunes 3D video data on a pre-trained
video VLM. Both approaches risk overfitting 3D position encodings to specific 3D tasks. In contrast,
our method adopts a unified architecture and 3D representation space for both image and video data,
enabling better alignment and improving generalization across spatial understanding tasks.

3 Methodology

We introduce a unified 3D-aware VLM architecture designed for both single-view and multi-view spatial
understanding. Our approach leverages the strong priors of a foundational 2D model to infer spatial
relationships across frames accurately. This is achieved by directly integrating 3D positional embeddings
into the foundational 2D visual representations. To further enhance spatial grounding at the region
level, we introduce a flexible and efficient module, the Dynamic Tiling-based Region Extractor, which
operates seamlessly across both single- and multi-view inputs. As illustrated in Figure 2, our framework
consists of a vision encoder, a 3D position encoding module, a region extractor, and an LLM backbone.
In this section, we detail three key components: (1) a canonical 3D positional representation for single-
and multi-view images (Sec.3.1), (2) the region extractor (Sec.3.2), and (3) the training paradigm
(Sec.3.3), along with how our model operates during inference (Sec. 3.4).

3.1 Canonical 3D Positional Representation

A key idea of SR-3D is the introduction of a canonical positional feature that is shared across both single-
view and multi-view inputs. This unified representation allows us to leverage large-scale single-view
image pretraining, while seamlessly transferring the learned spatial priors to multi-view scenarios.

Single-View Representation. We begin by pretraining our foundational VLM on large-scale 2D
images to establish strong visual-language priors. Given a single-view image I, we estimate its relative
depth map D using DepthAnythingV2 [21]. We then compute a pixel-wise 3D position map in the



camera coordinate system via back-projection, which is further canonicalized into a normalized world
coordinate system. This canonicalization ensures that spatial information is expressed in a consistent
and unified space, independent of camera pose.

To inject spatial information into VLM, we encode the corresponding 3D position map into embeddings
using a sinusoidal function followed by a learnable point-wise MLP. These embeddings are resized to
align with the token dimensions and then added to their respective vision tokens. This fusion enriches
visual representations with geometric awareness, enabling the model to better capture object placement
and spatial relationships within the scene.

Multi-View Representation. Building on the shared canonical space, we fine-tune the VLM with multi-
view inputs to extend spatial reasoning beyond single images. We uniformly sample 32 frames from a
video and resize both the images and their point maps to match the vision encoder’s input resolution.
For multi-view training, we use ground-truth depth rather than estimated depth, performing back-
projection and camera transformation to align the frames. The transformed point maps are normalized
into the same canonical space as in the single-view setup, ensuring consistency in spatial representation.
These processed frames and point maps act as the multi-view analog of the single-view tiles, enabling
seamless integration of spatial and visual information across both training stages.

3.2 Dynamic Tiling-based Region Extractor

Background: Dynamic Tiling-based Encoder. The visual backbone produces a low-resolution feature
map, limiting its ability to represent small-scale regions and objects. To address this, we adopt the
dynamic tiling mechanism employed in [6] that enables high-resolution processing while maintaining
spatial consistency. Instead of resizing entire images, we first determine the optimal aspect ratio
by selecting the closest match from a predefined set (e.g., 1:1, 1:2, 2:1, 3:1, ..., 2:6), minimizing
distortions. We then resize both the image and any corresponding point map accordingly and divide
them into tiles of 448 x 448, matching the vision encoder’s resolution. Each tile is encoded separately
before being stitched back together, preserving local details without exceeding memory constraints.
This tiling process is applied consistently across single-view and multi-view inputs, forming the basis
for both our 3D positional embedding and region feature extraction strategies.

Dynamic Region Extractor. Prior architectures without dynamic tiling rely on feature refinement
modules with deconvolution layers to upsample visual tokens [17, 18], attempting to recover lost
details. However, this refinement occurs after the vision encoder, meaning the features have already
undergone resizing and potential distortion, which may limit its ability to fully recover fine details.

To address this, we introduce a tile-then-stitch approach to extract region embeddings from high-
resolution features. For single-view input, given a region of interest (Rol) represented by a binary
mask, we apply the same dynamic tiling process used in the image pipeline to generate tiles of both
the image and the mask. The tiled visual tokens and masks are then stitched back together at a higher
resolution, followed by a mask-pooling operation to obtain the final mask feature. This method offers
two key advantages: (1) the extracted mask feature is derived from high-resolution features directly,
reducing distortion and eliminating the need for post-refinement, and (2) our tile-then-stitch approach
extends naturally to multi-view video inputs. In the multi-view setting, each frame is treated as a tile,
allowing us to handle one or multiple masks per frame while maintaining spatial consistency across
frames for the same Rol.



Spatial Math General Knowledge OCR-Related

Methods BLINKg SAT EmbSpat RWOQA MathVista GQA AI2D MMMU, SEED; POPE Textyqa Chartoa Docyga
NVILA-Lite-8B 79.7 62.6 68.9 65.6 64.5 65.3 91.0 25.1 76.3 88.1 78.1 84.8 91.7
SR-3D-8B 83.944 64.04 12 72.51356 68.1,,5 654 64.290.7 246 778 876 773 839 910

Table 1 Comparison of SR-3D and base model [6] performance on general image VQA benchmarks.

Where is the chair relative to
the table?

NVILA-Lite
The chair is centered underneath
the table.

K
The chair is underneath the table
to the right.

Is the sedan closer to us than the
minivan?
NVILA-Lite
Yes.
K
No.

Figure 3 RealWorldQA results. SR-3D shows stronger spatial understanding of physical environments compared
to the base model. We omit the answer choices for clarity in visualization.

3.3 Training Paradigm

For the single-view VLM, we initialize the weights from a pre-trained 2D VLM (NVILA-Lite-8B [6]),
keeping the vision encoder frozen while fine-tuning the 3D positional encoding module, projectors,
and the LLM. We reuse the instruction fine-tuning dataset from the pre-trained VLM and blend it with
region-prompted datasets [17, 18] in this stage, resulting in a total data blend of approximately 7
million samples. Full dataset details are provided in the Supplementary Materials.

For the multi-view model, we fine-tune the single-view model using datasets such as ScanQA [60],
SQA3D [61], and Scan2Cap [62], as well as a newly curated EmbodiedScan [63] dataset with region-
and spatial-focused question-answer pairs. To enhance robustness and generalization, we apply
various mask augmentations during multi-view training, including converting segmentation masks into
bounding boxes and randomly dropping frames to simulate single-frame annotations. These strategies
help the model learn to associate regions across frames while preserving spatial consistency.

We note that, unlike prior work [15] that employs separate pathways for single- and multi-view data,
we adopt a unified pipeline where all data flows through the same model architecture. This ensures
consistent processing of both single-view and multi-view inputs without distinction between spatial
region prompts and global queries, allowing seamless integration of spatial reasoning at different levels.

3.4 Inference

Our tile-and-stitch design enables flexible region-based inference. For single-view inputs, the model
accepts bounding boxes or segmentation masks as region annotations. In multi-view scenarios, it
supports a range of mask specifications: 3D bounding boxes that project into multi-frame masks,
sparse-frame masks, or even a single-frame mask—reflecting our method’s ability to handle varying
annotation densities while preserving spatial alignment.

For 3D input, although ground-truth depth maps were used during multi-view training, our approach
remains highly adaptable due to the canonicalization of 3D positions into a normalized space. This
allows us to replace ground-truth depth with point maps estimated from off-the-shelf models such as
MAST3R [23] or CUT3R [24]. Our model offers a highly flexible and generalizable solution for spatial
reasoning across diverse input modalities by maintaining a unified architecture that normalizes spatial
information across different 3D sources.



Methods Acc. (%)

Proprietary Models (API)

Qwen-VL-Max [66] 58.9

Gemini Pro [3] 50.0 Methods mAP (T) Acc. (%)

Claude 3 OPUS [67] 57.3

GPT-4V-preview [1] 58.9 CLIP [74] 58.9

GPT-4V-Turbo [1] 66.9 RegionCLIP [65] 58.3

GPT-40 [1] 64.5 LLaVA-7B [2] - 40.0

Open-source Models Shikra-7B [27] . 53.9
InstructBLIP-13B [68] 50.0 GPT4Rol-7B [35] - 64.0

Yi-VL-34B [69] 53.2 PVIT-7B [75] - 64.5
LLaVA-v1.5-13B-xtuner [70]  54.0 ASM-7B [76] 69.3 -

LLaVA-v1.6-34B [71] 64.5 RegionGPT-7B [17] 70.0 80.6
MiniGPT-4-v2-7B [28] 49.2 DynRefer [36] - 81.2
InstructBLIP-7B [68] 50.8 SpatialRGPT:8B [18] 729 829
LLaVA-v1.5-7B-xtuner [70]  50.8 SR-3D-8B 780 886

CogVLM-7B [29] 50.8

s ) (791 e Table 3 Region-level classification results on COCO-
SpatialRGPT-8B [18] 87.9 2017 val set with ground-truth boxes, following Re-
SR-3D-8B 90.3 gionCLIP [65] and RegionGPT [17].

Table 2 Results on BLINKpep:n. We follow Spatial-
RGPT [18]’s protocol to test whether a 3D-injected
VLM effectively leverages auxiliary spatial information.

4 Experiments

We first evaluate SR-3D on 2D benchmarks (Section 4.1) to verify whether the introduced positional
features improve performance while preserving the generalization of the base single-view model. We
then evaluate the multi-view model on 3D benchmarks in Section 4.2. We further show ablation studies
in Section 4.4 to analyze the role of pretraining and 3D positional encoding. Finally, we demonstrate
that our method can be seamlessly integrated with off-the-shelf 3D geometry foundation models as an
application (Section 4.5).

4.1 Evaluation on 2D Benchmarks

Region-level Question Answering. We evaluate our model’s object classification performance on the
COCO0-2017 [64] dataset using mean Average Precision (mAP) and classification accuracy as metrics.
Following prior work on region-level recognition [17, 18, 65], we rely on ground-truth boxes for
positional information and augment the general prompt with task-specific instructions. As reported in
Table 3, SR-3D attains an mAP of 78.0 and an accuracy of 88.6%, demonstrating strong region-level
recognition and validating the effectiveness of our region extractor. Compared with SpatialRGPT [18],
which is trained on the same region-level data, our model achieves significant gains, largely attributable
to the dynamic tiling extractor that provides higher-fidelity regional masks. For reference, we also
include DynRefer’s RolAlign (448 variant) [36] as a baseline at the same resolution. Importantly, their
proposed strategies are complementary to our approach.

We further evaluate SR-3D on the BLINKpepn benchmark [77] using the region-prompts as in Spatial-
RGPT [18], which tests point-level depth understanding in VLMs. BLINKpepn is a challenging task
that requires both spatial and regional awareness. We report results in Table 2 showing that SR-3D
outperforms current state-of-the-art SpatialRGPT [18], achieving 90% accuracy. These results highlight
that our approach excels in region extraction and effectively utilizes the provided 3D-aware input.

General Question Answering. We investigate two key questions: (1) Does incorporating 3D positional
information affect general vision-language understanding capabilities? (2) Can it improve performance



Scan2Cap ScanQA SQA3D

Methods B-47 Rougel Cider{ Meteor T B-47 Rougel Cider{ MeteorT EMT EM T
Task-specific Specialist

VoteNet+MCAN [78] - - - - 6.2 29.8 54.7 11.4 17.3
ScanRefer+MCAN [78] - - - - 7.9 30.0 55.4 11.5 18.6

ScanQA [60] - - - - 10.1 333 64.9 13.1 21.0

3D-VisTA [79] 34.0 54.3 66.9 27.1 10.4 35.7 69.6 13.9 22.4

2D Large Multi-modal Models

Oryx-34B [80] - - - - - 37.3 72.3 15.0 -

NaviLLM [81] - - - - 12.0 38.4 75.9 15.4 23.0
LLaVA-Video-7B' [82] - - - - 3.1 44.6 88.7 17.7 -

NaVILA [83] - - - - 169 493 1027 201 286

3D Large Multi-modal Models

3D-LLM ( f1amingo) [10] - - - - 7.2 32.3 59.2 12.2 20.4

3D-LLM p1p2— flants) [10] - - - - 12.0 35.7 69.4 14.5 20.5

LL3DA [14] 36.8 55.1 65.2 26.0 13.5 37.3 76.8 15.9 - -
Chat-3Dv2 [59] - - - - 14.0 - 87.6 - - 54.7
LEO [11] 36.9 57.8 68.4 27.7 13.2 49.2 101.4 20.0 24.5 50.0
Scene-LLM [58] - - - - 12.0 40.0 80.0 16.6 27.2 54.2
ChatScene [12] 36.3 58.1 77.2 28.0 14.3 41.6 87.7 18.0 21.6 54.6
LLaVA-3D [15] 41.1 63.4 79.2 30.2 14.5 50.1 91.7 20.7 27.0 55.6
Video-3D LLM [16] 42.4 62.3 83.8 28.9 16.2 49.0 102.1 19.8 30.1 58.6
SR-3D-8B 44.7 67.3 97.9 31.5 18.1 51.2 109.3 21.2 30.4 62.2

Table 4 Evaluation of spatial scene understanding performance on the Scan2Cap, ScanQA, and SQA3D bench-
marks. T indicates methods evaluated in a zero-shot setting. SR-3D achieves state-of-the-art results across all
metrics.

on spatial-related tasks? To answer these, we evaluate our model on general VLM benchmarks covering
Spatial [77, 84-86], Math [87], General Understanding [88-92], and OCR-related [93-95] tasks. As
shown in Table 1, compared to the base model NVILA-Lite-8B [6], our model maintains comparable
performance in math, general understanding, and OCR-related tasks, confirming that integrating 3D
positional information does not degrade overall vision-language capabilities. Additionally, our method
improves performance on the spatial understanding benchmark RealWorldQA [84]. We also provide
qualitative examples from RealWorldQA in Figure 3, showcasing cases where NVILA-Lite fails while
SR-3D succeeds in spatial reasoning tasks. These results demonstrate that our 3D-aware VLM enhances
spatial reasoning while preserving general vision-language capabilities.

4.2 Evaluation on 3D Benchmarks

General 3D Question Answering. We report results on three classic 3D vision-language understanding
tasks: 3D dense captioning on Scan2Cap [62], ScanQA [60], and SQA3D [61]. Our evaluation metrics
include conventional scores (e.g., CIDEr, BLEU, METEOR, ROUGE) as well as exact-match (EM) accuracy.
Following prior work, we assume that input scenes may lack 3D object mask annotations during inference
and use off-the-shelf models to generate proposals. However, unlike previous approaches, we leverage
2D segmentation models to generate 2D object proposals instead. We compare NaVILA against strong
baselines, including task-specific specialist models for each benchmark and leading methods from
both 2D and 3D large multimodal models (LMMs). NaVILA significantly outperforms state-of-the-art
single-task and task-specific fine-tuned models on 3D dense captioning and 3D QA tasks.

4.3 Video Spatial Intelligence.

Region-level Spatial QA. Currently, no video benchmarks specifically focus on region-level spatial
understanding. Without explicit region information, spatial understanding can become ambiguous,
especially when multiple identical objects are present or when referring to a specific area in a scene
that is difficult to describe precisely using language alone. To address this, we propose SR-3D-Bench,



&
\&& QQO{N co&&\ .~ S N §
S S S S S & $ ;

N A N ¥ & & &y ¢
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Blind LLMs w/ Language Referral
GPT-40 [1] 64.8 64.5 64.0 47.8 41.4 56.5 70.5 70.6 50.4 63.8
VLMs w/ Language Referral
GPT-40 [1] 52.1 54.1 57.5 62.4 42.4 53.7 724 72.8 55.8  67.0
NVILA-Video-8B [6] 48.8 38.9 53.7 52.1 36.0 459 59.2 543 6.6 40.0
Region VLMs
GPT-40 [1]+SoM 46.1 39.9 39.3 52.1 43.2 44.1 524 478 40.0 46.7
NVILA-Video-8B [6]+SoM 49.3 40.0 53.7 52.1 40.4 47.1 59.3 541 6.6 40.0
SR-3D-8B 76.3 83.1 81.8 80.3 76.0 79.5 87.7 873 748 833

Table 5 Evaluation of region-level spatial scene understanding on the SR-3D-Bench.
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Figure 4 SR-3D results on region-level multi-view spatial understanding. We show extreme cases where the
same region prompts are used across samples but with different target objects. SR-3D answers all queries
correctly, showing strong evidence that it truly understands 3D spatial relationships.

a region-level spatial benchmark curated from ScanNet [96], ARKitScenes [97], and Matterport[98]
video scan datasets with 3D ground truth. Specifically, we utilize preprocessed oriented bounding
box annotations from EmbodiedScan [63], where each object is axis-aligned within a canonicalized
geodetic coordinate system. This alignment ensures that the bounding box dimensions accurately
represent the true width, length, and height. Using these bounding boxes, we construct a conversational
benchmark that includes both qualitative and quantitative question-answering tasks. The qualitative
QA consists of choice-based, predicate-based, and multiple-choice questions, while the quantitative QA
focuses on measuring object width, height, and distance. We generate these QA pairs using template-
based conversation generation and allow the VLM to generate free-form language. For qualitative QA
evaluation, we use GPT-4o0 [1] as an evaluator and report the accuracy, while for quantitative QA, we
measure the success rate by thresholding the maximum ratio between estimation and the ground truth
value.

We report three types of baseline models: (1) Blind LLMs, which answer questions using only the
provided text without visual input. To improve this, we replace the mask prompt with the object class
for each question. This serves as a baseline to measure how much video spatial reasoning can come
from general world knowledge alone. We use GPT-40 as the representative, as it is one of the most
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Methods Quantitative Qualitative
Proprietary Models (API)
GPT-40 [1] 5.3 43.8 38.2 37.0 41.3
Gemini-1.5 Flash [100] 30.8 53.5 54.4 37.7 41.0
Gemini-1.5 Pro [100] 30.9 64.1 43.6 51.3 46.3
Open-source Models
InternVL2-2B [101] 24.9 22.0 35.0 33.8 44.2
InternVL2-8B [101] 28.7 48.2 39.8 36.7 30.7
InternVL2-40B [101] 26.9 46.5 31.8 42.1 32.2
LongVILA-8B [102] 9.1 16.7 0.0 29.6 30.7
VILA-1.5-8B [103] 21.8 50.3 18.8 32.1 34.8
VILA-1.5-40B [103] 24.8 48.7 22.7 40.5 25.7
LongVA-7B [104] 16.6 38.9 22.2 33.1 43.3
LLaVA-NeXT-Video-7B[71] 14.0 47.8 24.2 43.5 42.4
LLaVA-NeXT-Video-72B [71] 22.8 57.4 35.3 42.4 36.7
LLaVA-OneVision-0.5B [105] 28.4 15.4 28.3 28.9 36.9
LLaVA-OneVision-7B [105] 20.2 47.4 12.3 42.5 35.2
LLaVA-OneVision-72B [105] 23.9 57.6 37.5 42.5 39.9
SR-3D-8B 52.8 75.5 41.9 57.3 82.3

Table 6 Results on multi-view global spatial scene understanding evaluated on VSI-Bench [54]. T indicates
methods tested on the Tiny subset. SR-3D achieves strong performance on the relative direction task, providing
clear evidence that the model effectively leverages the 3D positional encoding.

advanced models for general knowledge. (2) VLMs with Language Referral, which have access to
visual content, allowing them to potentially perform better than blind LLMs. We use state-of-the-art
vision-language models GPT-40 [1] and NVILA-Video [6] as baselines in this category. (3) Region-aware
Video VLMs. These models process specific image regions without relying on text descriptions or object
class information. We equip GPT-40 and NVILA-Video with Set of Marks (SoM) for region-based
reasoning. Note that while [99] and [37] are also region-level video VLMs, they are excluded from
comparisons as they cannot handle multi-object input or lack support for multi-frame prompts.

We present results in Table 5. The findings suggest that both Blind LLMs and VLMs with Language
Referral perform reasonably well on quantitative tasks, such as estimating object width, due to their
general world knowledge. However, region-level VLMs equipped with SoM struggle, likely because the
models find it challenging to track the set of marks across frames. Overall, our method outperforms all
baselines across all categories.

Global Spatial QA. We also report results on global spatial understanding using VSI-Bench [54], a
recently proposed benchmark that quantitatively evaluates the visual-spatial intelligence of VLMs
based on egocentric videos. In our evaluation, we exclude categories that are less relevant to spatial
reasoning, such as appearance order, which is more about temporal understanding. We use accuracy
as the evaluation metric for qualitative questions and Mean Relative Accuracy (MRA) for quantitative
questions. As shown in Table 6, SR-3D outperforms all open-source models and performs comparably,
if not better, than API-based models.

4.4 Analysis and Ablation Study

Zero-shot Generalization. In this analysis, we aim to answer the question: Can a foundational 2D
VLM trained exclusively on single-view image data perform zero-shot spatial reasoning on multi-view
3D scenes? To answer this, we evaluate its zero-shot performance on SR-3D-Bench covering Tall/Short,
Big/Small, Height, and Distance categories. We exclude the width-related category because the width
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If I am standing by the microwave and facing the  If I am standing by the door and facing the microwave, is the ~ What is the length of the longest dimension (length, width, or
door, is the kettle to my left, right, or back? kettle to my front-left, front-right, back-left, or back-right?  height) of the ceiling light, measured in centimeters?

Left Front-right 119 (GT:127)

If T am standing by the door and facing the laptop, is the =~ Whatis the size of this room (in square meters)? If multiple Measuring from the closest point of each object, what is the
whiteboard to my front-left, front-right, back-left, or back-right?  rooms are shown, estimate the size of the combined space. ~distance between the whiteboard and the door (in meters)?

Front-right 213 (GT:18.1) 19 (GT:2.0)

Figure 5 VSI-Bench results. We highlight SR-3D ’s outputs and include ground-truth values for numerical
answers. The results show that SR-3D answers spatial questions correctly even without region prompts.

2D Pre-train 3D Tall/Short 3D Big/Small 3D Height 3D Distance

Zero-shot 2D Models

Base Model 40.0_31_4 53-7-26.0 54.1_14,4 6.6_61_9
SR-3D-2D v 71.4 79.7 68.5 68.5
Finetuned 3D Models

SR-3D 83.100 80.5.13 85.7.16 60.3.145
SR-3D v 83.1 81.8 87.3 74.8

Table 7 Zero-shot evaluation of our 2D-trained VLM on SR-3D-Bench, testing whether the model’s representations
are truly aligned. Our 2D model achieves reasonable accuracy without explicit 3D supervision.

is defined differently in single-view and multi-view. In single-view images, width refers to the horizontal
extent in the image plane [18], whereas in multi-view settings, it represents an object’s maximum
length or width. Table 7 shows our results, indicating that the single-view model performs highly
competitively. This suggests that our unified representation design effectively transfers knowledge from
single-view images, despite the challenge of the model never encountering multi-view data, scene-level
position embeddings, or ground-truth spatial annotations.

3D Position Embedding and Single-view Pre-training. We conduct an ablation study to evaluate
the impact of single-view pre-training and 3D positional embeddings on our model’s performance. We
compare two model variants: one fine-tuned directly on multi-view data without positional embeddings
and another with them. As shown in Table 8, our results indicate that single-view pre-training
significantly enhances performance on multi-view data by enabling the model to leverage prior spatial
knowledge. In contrast, adding 3D positional embeddings without scaling provides only a marginal
improvement. This highlights the necessity of scaling up to fully harness the power of positional
representations for spatial reasoning.

4.5 Applications

Our method is flexible in two key ways. First, because SR-3D is trained in a normalized 3D space, it
naturally connects with existing 3D foundation models [23, 24, 106, 107] for pointmap estimation.
The input is not restricted to 3D scans—SR-3D can also operate on in-the-wild videos such as YouTube
footage. To quantitatively validate this, we evaluate SR-3D on both ground-truth point clouds and
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3DPE 2D Pretrain Scan2Cap ScanQA SQA3D 3D Region 3D Global

92.9 101.3 58.6 74.0 51.1

4 94.3 108.2 59.5 78.1 52.9

v 92.7 102.9 59.1 75.3 51.2
4 v 97.9 109.3 62.2 80.9 62.0

Table 8 Ablation study on the impact of incorporating 3D positional embeddings (3D PE) and single-view
pre-training. We report CIDEr for Scan2Cap and ScanQA, EM for SQA3D, and the average score for both the 3D
region and global benchmarks.

3DSource C7 B-17 B47 M7 R7T EM]

Video3dLLM [16] GT 102.1 47.1 16.2 19.8 49.0 30.1
Video3dLLM [16] Cut3R  100.7 46.6 15.8 19.6 48.6 29.9

SR-3D GT 109.3 509 18.1 21.2 51.2 304
SR-3D Cut3R  109.3 509 18.1 21.2 51.2 30.2

Table 9 ScanQA results on both ground-truth point clouds and Cut3R-reconstructed point clouds.

Cut3R-reconstructed [24] point clouds, comparing it with the baseline Video3dLLM [16] on ScanQA.
As shown in Table 9, SR-3D maintains strong performance with Cut3R outputs, close to its ground-truth
results, whereas the baseline exhibits a significant drop.

Second, SR-3D eliminates the need for costly 3D annotations or dense per-frame labeling. Instead,
users can provide lightweight region inputs by simply drawing on a single frame, which the model
then propagates for spatial reasoning across the video.

Combining these two aspects, SR-3D demonstrates robust spatial understanding from unconstrained
video inputs without reliance on 3D scans or exhaustive annotations (Figure 1). These flexibilities
open the door to a wide range of real-world applications, such as assisting robots in unstructured
environments, analyzing large video collections, and supporting interactive spatial reasoning tasks.

5 Conclusion

We introduce SR-3D, a foundational VLM for 3D-aware spatial reasoning. By unifying single-view and
multi-view data in a shared space, our approach leverages 2D priors from pretrained VLMs to tackle
complex 3D tasks. Our tile-and-stitch method extracts high-resolution region features, enabling flexible
region prompts across both settings. Experiments on 2D vision-language and 3D spatial benchmarks
show state-of-the-art performance, validating SR-3D’s ability to unify and enhance spatial reasoning.
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A More Quantitative Results on 3D General Benchmarks

Following prior work, we report results using additional metrics for a more comprehensive evaluation.
Table 10 presents results on Scan2Cap, Table 11 on ScanQA, and Table 12 on SQA3D. Apart from our
method, all other results are from Video-3D-LLM [16].

Cider 7 Bleu-47 MeteorT Rouge T

Scan2Cap [62] 39.1 23.3 22.0 44.5
3DJCG [108] 49.5 31.0 24.2 50.8
D3Net [109] 62.6 35.7 25.7 53.9
3D-VisTA [79] 66.9 34.0 27.1 54.3
LL3DA [14] 65.2 36.8 26.0 55.1
LEO [11] 68.4 36.9 27.7 57.8
ChatScene [12] 77.2 36.3 28.0 58.1
LLaVA-3D [15] 79.2 41.1 30.2 63.4
Video-3D LLM [16] 83.8 42.4 28.9 62.3
SR-3D 97.9 44.7 31.5 67.3

Table 10 Full results on Scan2Cap [62] validation set.

EM Bleu-17 Bleu-2 7T Bleu-3 7 Bleu-4 T Rouge T Meteor T Cider T

ScanQA [60] 21.1  30.2 20.4 15.1 10.1 33.3 13.1 64.9
3D-VisTA [79] 22.4 - - - 10.4 35.7 13.9 69.6
Oryx-34B [80] - 38.0 24.6 - - 37.3 15.0 72.3
LLaVA-Video-7B [82] - 39.7 26.6 9.3 3.2 44.6 17.7 88.7
3D-LLM (Flamingo) [10] 20.4 303 17.8 12.0 7.2 32.3 12.2 59.2
3D-LLM (BLIP2-flant5) [10] 20.5 39.3 25.2 18.4 12.0 35.7 14.5 69.4

Chat-3D [59] - 29.1 - - 6.4 28.5 11.9 53.2
NaviLLM [81] 23.0 - - - 12.5 38.4 15.4 75.9
LL3DA [14] - - - - 13.5 37.3 15.9 76.8
Scene-LLM [58] 27.2  43.6 26.8 19.1 12.0 40.0 16.6 80.0
LEO [11] - - - - 11.5 39.3 16.2 80.0
Grounded 3D-LLM [110] - - - - 13.4 - - 72.7
ChatScene [12] 21.6 432 29.1 20.6 14.3 41.6 18.0 87.7
LLaVA-3D [15] 27.0 - - - 14.5 50.1 20.7 91.7
Video-3D LLM [82] 30.1 47.1 31.7 22.8 16.2 49.0 19.8 102.1
SR-3D 30.4 50.9 34.3 25.1 18.1 51.2 21.1 109.3

Table 11 Full results on ScanQA [60] validation set.

What Is How Can Which Others Avg.

SQA3D [61] 31.6 63.8 46.0 69.5 439 45.3 46.6
3D-VisTA [79] 348 63.3 454 69.8 47.2 48.1 48.5
LLaVA-Video[82] 42.7 56.3 47.5 553 50.1 47.2  48.5
Scene-LLM [58] 409 69.1 450 70.8 47.2 52.3 54.2

LEO [11] - - - - - - 50.0
ChatScene [] 454 67.0 52.0 69.5 49.9 55.0 54.6
LLaVA-3D [15] - - - 55.6

Video-3D LLM [16] 51.1 72.4 55.5 69.8 51.3 56.0 58.6
SR-3D 55.0 764 59.8 71.6 54.7 61.1 622

Table 12 Full results on SQA3D [61] testing set.

B More Quantitative Results on VSI-Bench

We report additional visual results on VSI-Bench, primarily using scenes from ScanNet**. ScanNet™ " is
not included in EmbodiedScan’s annotations, making it a distinct and challenging dataset for evaluation.
Compared to ScanNet, ScanNet** offers higher fidelity and greater diversity in indoor environments.
Moreover, its 3D annotations are only coarsely aligned to match walls and floors to the axis. Despite
these challenges, as shown in Figure 6, our method demonstrates superior capabilities in determining
relative direction, highlighting its robustness in real-world tasks.
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C More Ablation Study

We present the complete ablation study results on 2D single-view pre-training and 3D positional
encoding without pre-training, evaluating their influence on model performance. The detailed results
are shown in Table 13 and Table 16, respectively.

Overall, the fully-trained model consistently outperforms baseline models on 3D general QA benchmarks,
demonstrating the benefits of leveraging both 2D and 3D spatial information. However, in the 3D
spatial-focused dataset, we observe a slight drop in the Wide and Big category, likely due to differences
in how width is defined in 2D versus 3D, as discussed in the main paper.

Additionally, we find that removing pre-training leads to a substantial drop in performance for more
complex reasoning tasks, particularly in the multi-choice complex category, where the model struggles
without prior exposure to large-scale 2D pre-training. These results highlight the importance of both
spatial-aware representation learning and strong pre-training strategies in enhancing 3D reasoning
capabilities.

Scan2Cap ScanQA SQA3D
PE PT Bleu47 Rougel Cider] Meteor] Bleu-47T Rougel Cider] Meteor] EMT EMT
44.2 67.3 92.9 31.1 16.0 48.9 101.3 19.8 288 58.6
v 44.0 67.3 92.7 31.0 17.4 48.8 102.9 20.0 29.1 59.1
v v 44.7 67.3 97.9 31.5 18.1 51.2 109.3 21.2 304 62.2

Table 13 Ablation study full results on Scan2Cap, ScanQA, and SQA3D benchmarks.

Category Thin-Wide Tall-Short Big-Small Multi-Simple Multi-Complex Width Data Distance Data Height Data Total Length
Count 219 231 231 117 500 496 242 464 2500

Table 14 Statistical analysis of our SR-3D-Bench, showing the distribution of different spatial attributes.

D Statistics of SR-3D-Bench

Our benchmark follows template designs from prior works on spatial reasoning in vision-language
models, including SpatialRGPT and SpatialVLM. To further increase the complexity and diversity
of spatial reasoning tasks, we incorporate situated annotations from the EmbodiedScan dataset,
ensuring a more realistic and challenging evaluation setting. Specifically, our dataset includes a
range of spatial relationships, from basic geometric comparisons such as thin-wide, tall-short, and
big-small, to more complex multi-object interactions categorized as multi-simple and multi-complex.
Additionally, we introduce explicit width, distance, and height annotations to facilitate fine-grained
spatial understanding. With a total of 2,500 samples, our benchmark provides a comprehensive
evaluation for assessing the region-level spatial reasoning capabilities of vision-language models in
realistic scenarios.

E Implementation Details of SR-3D

We use PaliGemma as our visual backbone with an input size of 448 and a patch size of 14, paired
with a Qwen-2-7B LLM backbone. For training the foundational 2D VLM, we follow prior work and
set the maximum tiles per image to 12. For the multi-view VLM, we use a frame size of 32 with a
uniform sampling strategy to ensure a fair comparison with previous methods. For training the 2D
VLM, we adopt a learning rate of 5e-5 with cosine decay and gradient clipping enabled. The same
hyperparameters are used for fine-tuning the 3D VLM, except for a reduced batch size due to the
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What is the length of the longest dimension (length, width, Measuring from the closest point of each object, what is the ~ What is the size of this room (in square meters)? If multiple
or height) of the refrigerator, measured in centimeters? distance between the refrigerator and the suitcase (in meters)? rooms are shown, estimate the size of the combined space.

159 (GT:169) 1.6 (GT:1.6) 441 (GT:54.4)

What is the length of the longest dimension (length, width, Measuring from the closest point of each object, which of these objects Measuring from the closest point of each object, what is
or height) of the whiteboard, measured in centimeters? (plant, ceilinglight, keyboard, monitor) is the closest to the telephone?  the distance between the shoes and the door (in meters)?

124 (GT:128) plant 44 (GT:4.3)

If Tam standing by the tv and facing the chair, is the toilet ~ What is the size of this room (in square meters)? If multiple Measuring from the closest point of each object, which of these
to my front-left, front-right, back-left, or back-right? rooms are shown, estimate the size of the combined space. objects (door, chair, pillow, table lamp) is the closest to the toilet?

Back-right 26.0 (GT:22.8) Door

=

_ A

d— > - e
If I am standing by the chair and facing the pillow, If I am standing by the pillow and facing the chair, is Measuring from the closest point of each object, which of these
is the ceiling light to my left, right, or back? the ceiling light to my left, right, or back? objects (shoes, plant, pillow, chair) is the closest to the heater?
Right Left Shoes

Figure 6 More results on VSI-Bench [54]. We highlight SR-3D ’s outputs and include ground-truth values for
numerical answers.

increased token length. The data recipe for both training stages is detailed in Table 15. We train on a
subset of 2D data, excluding spatial and region-related datasets, to preserve the original vision-language
capabilities while incorporating a diverse source.

F Limitations

Orientations Although our method shows promising results, it remains challenging for current vision-
language models to accurately perceive and interpret spatial questions related to object orientation.
This challenge arises due to the difficulty of scaling up data. We leave this as future work.

Dynamic Videos Our method is designed for multi-view static data, whereas real-world scenarios
often involve dynamic environments. Incorporating positional embeddings to handle both static and
dynamic inputs is non-trivial. Future work should explore methods to address this limitation.

OCR Tasks In the main paper, Table 1, we report the performance of our 2D foundation model on general
benchmarks. While our model maintains comparable performance to the base model, demonstrating
improved spatial understanding without significant trade-offs, we observe a consistent slight drop in



2D Data

Hybrid ShareGPT4V-SFT, Molmo, The Cauldron, Cambrian, LLaVA-OneVision
Captioning MSR-VTT, Image Paragraph Captioning, ShareGPT4V-100K
Reasoning CLEVR, NLVR, VisualMRC
Document DocVQA, UniChart-SFT, ChartQA

OCR  TextCaps, OCRVQA, ST-VQA, POIE, SORIE, SynthDoG-en, TextOCR-GPT4V, ArxivQA, LLaVAR

General VQA  ScienceQA, VQAv2, VIQUAE, Visual Dialog, GQA, Geo170K, LRV-Instruction, RefCOCO, GeoQA,
OK-VQA, TabMVP, EstVQA

Diagram & Dialogue DVQA, AI2D, Shikra, UniMM-Chat

Instruction  LRV-Instruction, SVIT, MMC-Instruction, MM-Instruction

Text-only FLAN-1M, MathlInstruct, Dolly, GSM8K-ScRel-SFT
Knowledge ~WordART, WIT, STEM-QA
Medical PathVQA, Slake, MedVQA

Region  RegionGPT

Spatial ~ SpatialRGPT

3D Data

General ScanQA, SQA3D, Scan2Cap

Spatial EmbodiedScan

Table 15 Data recipe for training 2D foundational VLM and 3D fine-tuning.

3D Region 3D Global
PE PT Wide Tall Big M.Sim. M.Cpx. Avg. Width Height Dist. Avg.

77.6 80.5 82.6 71.7 55.8 73.6 858 84.4  53.7 744
4 77.6 83.1 80.5 70.9 59.0 74.2  85.5 857 603 772
v v 763 831 818 80.3 76.0 79.5 87.7 87.3 748 833

Table 16 Ablation study full results.

OCR-related tasks. A potential solution is to incorporate more OCR-related tasks into the training data
pipeline.

Unified Checkpoint While our unified architecture and representation provide a foundation for both
single- and multi-view 3D-aware VLMs, we leave it to future work to investigate how to effectively
combine the two models. This could be achieved either by introducing an agentic flow between single-
and multi-view models or by directly training a single model across both settings, which may further
improve generalization and efficiency.
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